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True Stress-5train Diagram. Instead of always using the original
cross-sectional area and specimen length to calculate the (engineering)
stress and strain, we could have used the acfual cross-sectional area and
specimen length at the instant the load 1s measured. The values of stress
and strain found from these measurements are called true stress and frue
strain, and a plot of their values is called the frue stress—strain diagram.
When this diagram is plotted it has a form shown by the light-blue curve
in Fig. 3—4. Note that the conventional and true o—e diagrams are
practically coincident when the strain 1s small. The differences between
the diagrams begin to appear in the strain-hardening range, where the
magnitude of strain becomes more significant. In particular, there 1s
a large divergence within the necking region. Here it can be seen from
the conventional o—e diagram that the specimen actually supports a
decreasing load, since Aj 1s constant when calculating engineering siress,
o = P/Ay. However, from the true o—e diagram, the actual area A within
the necking region is always decreasing until fracture, of, and so the
material actually sustains increasing stress,since o = P/A.



Although the true and conventional stress—strain diagrams are
different, most engineering design is done so that the material supports a
stress within the elastic range. This is because the deformation of the
material is generally not severe and the material will restore itself when
the load i1s removed. The true strain up to the elastic limit will remain
small enough so that the error in using the engineering values of o and e
is very small (about 0.1%) compared with their true values. This is one of
the primary reasons for using conventional stress—strain diagrams.

The above concepts can be summarized with reference to Fig. 3-6,
which shows an actual conventional stress—strain diagram for a mild steel
specimen. In order to enhance the details, the elastic region of the curve
has been shown in light blue color using an exaggerated strain scale, also
shown in light blue. Tracing the behavior, the proportional limit is
reached at o, = 35 ksi (241 MPa), where €, = 0.0012in./in. This is
followed by an upper yield point of (oy), = 38 ksi (262 MPa), then
suddenly a lower yield point of (oy); = 36 ksi (248 MPa). The end of
yielding occurs at a strain of ey = 0.030 in. /in., which is 25 times greater
than the strain at the proportional limit! Continuing, the specimen
undergoes strain hardening until it reaches the ultimate stress of
o, = 63 ksi (434 MPa), then it begins to neck down until a fracture
occurs, oy = 47 ksi (324 MPa). By comparison, the strain at failure,

e = 0.3801in./in., is 317 times greater than €,
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3.3 Stress-Strain Behavior of Ductile
and Brittle Materials

Materials can be classified as either being ductile or brittle, depending on
their stress—strain characteristics.

Ductile Materials. Any material that can be subjected to large
strains before it fractures i1s called a ductile material. Mild steel, as
discussed previously, is a typical example. Engineers often choose ductile
materials for design because these materials are capable of absorbing
shock or energy, and if they become overloaded, they will usually exhibit
large deformation before failing.

One way to specify the ductility of a material is to report its percent
elongation or percent reduction in area at the time of fracture. The
percent elongation is the specimen’s fracture strain expressed as a
percent. Thus, if the specimen’s original gauge length is [, and its length
at fracture 1s Lf, then

Ly — L
Percent elongation = —. 7 2(100%) (3-3)

“{)
As seen in Fig. 3-6, since € = 0.380, this value would be 38% for a mild
steel specimen.

The percent reduction in area is another way to specify ductility. It is
defined within the region of necking as follows:

: _ Ag — A I
Percent reduction of area = - A (100%) (3—4)
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Here Ay is the specimen’s original cross-sectional area and Ay is the area
of the neck at fracture. Mild steel has a typical value of 60%.

Besides steel, other metals such as brass, molybdenum, and zinc may
also exhibit ductile stress—strain characteristics similar to steel, whereby
they undergo elastic stress—strain behavior, yielding at constant stress,
strain hardening, and finally necking until fracture. In most metals,
however, constant yielding will not occur beyond the elastic range. One
metal for which this is the case is aluminum. Actually, this metal often
does not have a well-defined yield point, and consequently it is standard
practice to define a yield strength using a graphical procedure called the
offset method. Normally for structural design a (.2% strain (0.002 in. /in.)
is chosen, and from this point on the € axis, a line parallel to the initial
straight-line portion of the stress—strain diagram is drawn. The point where
this line intersects the curve defines the yield strength. An example of the
construction for determining the yield strength for an aluminum alloy 1s
shown in Fig. 3-7. From the graph, the yield strength is oy = 51 ksi
(352 MPa). Apart from metals,0.2% strain is used as the offset to determine
the yield strength of many plastics.
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Brittle Materials. Materials that exhibit little or no yielding before
failure are referred to as brittle materials. Gray cast iron is an example,
having a stress—strain diagram in tension as shown by portion AB of the
curve in Fig. 3-9. Here fracture at oy = 22 ksi (152 MPa) took place
initially at an imperfection or microscopic crack and then spread rapidly
across the specimen, causing complete fracture. Since the appearance of
initial cracks in a specimen is quite random, brittle materials do not have a
well-defined tensile fracture stress. Instead the average fracture stress from
a set of observed tests is generally reported. A typical failed specimen is
shown in Fig. 3—10a.

Compared with their behavior in tension, brittle maternals, such as
gray cast iron, exhibit a much higher resistance to axial compression, as
evidenced by portion AC of the curve in Fig. 3-9. For this case any cracks
or imperfections in the specimen tend to close up, and as the load
increases the material will generally bulge or become barrel shaped as
the strains become larger, Fig. 3-10b.
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increases the material will generally bulge or become barrel shaped as
the strains become larger, Fig. 3-10b.

Like gray cast iron, concrete is classified as a brittle material, and it
also has a low strength capacity in tension. The characteristics of its
stress—strain diagram depend primarily on the mix of concrete (water,
sand, gravel, and cement) and the time and temperature of curing. A typical
example of a “complete™ stress—strain diagram for concrete is given in
Fig. 3-11. By inspection, its maximum compressive strength is about
12.5 times greater than its tensile strength, (o). = 5 ksi (34.5 MPa)
versus (o )ma = 0.40 ksi (2.76 MPa). For this reason, concrete is almost
always reinforced with steel bars or rods whenever it is designed to support
tensile loads.

It can generally be stated that most materials exhibit both ductile and
brittle behavior. For example, steel has brittle behavior when it contains
a high carbon content, and it is ductile when the carbon content is
reduced. Also, at low temperatures materials become harder and more
brittle, whereas when the temperature rises they become softer and
more ductile. This effect is shown in Fig. 3-12 for a methacrylate plastic.
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3.4 Hooke's Law

As noted in the previous section, the stress—strain diagrams for most
engineering materials exhibit a linear relationship between stress and
strain within the elastic region. Consequently, an increase in stress causes
a proportionate increase in strain. This fact was discovered by Robert
Hooke in 1676 using springs and is known as Hooke's law. It may be
expressed mathematically as

| o = Ee| (3-5)

Here E represents the constant of proportionality, which is called the
modulus of elasticity or Young’s modulus, named after Thomas Young,
who published an account of 1t in 1807.

Equation 3-5 actually represents the equation of the initial straight-lined
portion of the stress—strain diagram up to the proportional limit.
Furthermore, the modulus of elasticity represents the slope of this line.
Since strain is dimensionless, from Eq. 3-5, F will have the same units as
stress, such as psi, ksi, or pascals. As an example of its calculation, consider
the stress-strain diagram for steel shown in Fig. 3-6. Here o = 35 ksi
and €;; = 0.0012 in./in., so that

Tpi 35 ksi
€y 0.0012in./in.

= = 29(107) ksi
As shown in Fig. 3-13, the proportional limit for a particular type of steel

alloy depends on its carbon content; however, most grades of steel, from the
softest rolled steel to the hardest tool steel, have about the same modulus of
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Strain Hardening. If a specimen of ductile material, such as steel, _ ,
is loaded into the plastic region and then unloaded, elastic strain is | €lastc plastic

, , crer ) region region
recovered as the material returns to its equilibrium state. The plastic '
strain remains, however, and as a result the material is subjected to a
permanent set. For example, a wire when bent (plastically) will spring
back a little (elastically) when the load is removed; however, it will not
fully return to its original position. This behavior can be illustrated on

the stress—strain diagram shown in Fig. 3-14a. Here the specimen is first

loaded beyond its yield point A to point A'. Since interatomic forces hoag ;/t(

have to be overcome to elongate the specimen elastically, then these 5

same forces pull the atoms back together when the load 1s removed, /u s

Fig. 3-14a. Consequently, the modulus of elasticity, F, is the same, and /

therefore the slope of line O'A’ is the same as line OA. ";Emunﬁnf: elastic _
If the load is reapplied, the atoms in the material will again be displaced set | recovery

until yielding occurs at or near the stress A’, and the stress—strain diagram (a)

continues along the same path as before, Fig. 3-14b. It should be noted,

however, that this new stress—strain diagram, defined by O'A’'B, now has

a higher yield point (A'), a consequence of strain-hardening. In other o

words, the material now has a greater elastic region; however, it has less

ductility, a smaller plastic region, than when it was in its original state. elastic plastic



3.5 Strain Energy

As a material is deformed by an external load, the load will do external
work, which in turn will be stored in the material as internal energy. This
energy 1s related to the stramns in the matenal, and so 1t 18 referred 1o as
strain energy. To obtain this strain energy let us consider a volume element
ol material from a tension test specimen Fig. 3-15. It is subjected to the
uniaxial stress or. This stress develops a force AF = o AA = o (Ax Ay)
on the top and bottom laces ol the element affer the element of length Az
undergoes a vertical displacement e Az. By definition, work of AF is
determined by the product of a foree and the displacement in the direction
ol the force. Since the force is increased uniformly from zero to its final
magnilude AF when the displacement € Az occurs, the work done on the
element by the force is then equal to the average force magnitude (AF/2)
times the displacement € Az, The conservation ol energy requires this
“external work™ on the element to be equivalent to the “internal work™
or strain energy stored in the element —assuming that no energy is
lost in the form of heal. Consequently, the strain energy AU is
AU = (JAF) e Az = (} o Ax Ay) € Az Since the volume of the element
is AV = Ax Ay Az, then AU = } oe AV.

For applications, it is often convenient o specily the strain energy per
unit volume of material. This is called the strain-energy density, and it
can be expressed as

AU 1
AV 2 e (3-6)

Finally, if the material behavior is linear elasiic, then Hooke's law
applies, o = ke, and therelore we can express the elasiic strain-energy
density in terms ol the uniaxial stress o as

i

1 ot

_ 3.7
“ToE (3-7)
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Modulus of Resilience. In particular, when the stress o reaches
the proportional limit, the strain-energy density, as calculated by Eq. 3-6
or 3-7, s referred to as the modulus of resilience,i.c.,

1 10 -

i, = E'ﬂ'ﬂj € = E F ( )
From the elastic region of the stress—strain diagram, Fig. 3-16a, notice that
u, is equivalent to the shaded iriangular area under the diagram. Physically
the modulus of resilience represents the largest amount of internal strain
energy per unit volume the material can absorb without causing any
permanent damage to the material. Certainly this becomes important
when designing bumpers or shock absorbers.



Modulus of Tﬂughness. Another important property of a
material is the modulus of toughness, u,. This quantity represents the
entire area under the stress—strain diagram, Fig. 3-16b, and therefore it
indicates the maximum amount of strain-energy the material can absorb
Just before it fractures. This property becomes important when designing
members that may be accidentally overloaded. Note that alloying metals
can also change their resilience and toughness. For example, by changing
the percentage of carbon in steel, the resulting stress—strain diagrams in
Fig. 3-17 show how the degrees of resilience (Fig. 3-16a) and toughness
(Fig.3-16b) can be changed.

o

Modulus of toughness u,



A tension lest for a steel alloy results in the stress—strain diagram
shown in Fig. 3-18. Calculate the modulus of elasticity and the yield
strength based on a 0.2% offset. Identify on the graph the ultimate
stress and the fracture stress.
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SOLUTION

Modulus of Elasticity. We must calculate the slope of the initial
stranghi-line portion of the graph. Using the magmiied curve and scale
shown in blue, this line extends from point ¢ to an estimated point A,
which has coordinates of approximately (0.00161n. fin., 50 ksi).
Therelore,

_ 50 ksi
0.0016 in. fin,

Mote that the equation of line OA is thus o = 31.2(10")e.

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2% or
0.0020 in. /in. and graphically extend a (dashed) line parallel to A until
it intersects the o—e curve at A'. The vield strength is approximately

oy = 68 ksi Ans.

Ultimate Stress. This is defined by the peak of the a—e graph,
point B in Fig. 3-18.

E

= 31.2(10%) ksi Ans.

o, = 108 ksi Ans.
Fracture Stress. When the specimen is strained (o its maximum of
e = 0.23in. fin., it fractures at point C. Thus,

ay = 90 ksi Ans.



The stress—strain diagram for an aluminum alloy that is used for
making aircraft parts is shown in Fig. 3-19. If a specimen of this
material is stressed to 600 MPa, determine the permanent strain that
remains In the specimen when the load 1s released. Also, find the
modulus of resilience both before and alter the load application.

SOLUTION

Permanent Strain. When the specimen is subjected to the load, it
strain-hardens until point B is reached on the o—e diagram. The strain
at this point is approximately 0.023 mm /mm. When the load is released,
the material behaves by following the straight line BC, which is parallel
to line OA. Since both lines have the same slope, the strain at point C
can be determined analytically. The slope of line OA is the modulus of
elasticity, i.e.,
450 MPa
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An aluminum rod, shown in Fig. 3-20a, has a circular cross section and
1s subjected to an axial load of 10 kN. If a portion of the stress—strain
diagram is shown in Fig. 3-20b, determine the approximate elongation
of the rod when the load is applied. Take E,; = 70 GPa.

A | B | ¢

10kN 4—*—b 10kN
Epc = (.0450

600 mm 400 mm

© (a)
Fig. 3-20



3.6 Poisson’s Ratio

When a deformable body is subjected to an axial tensile force, not only
does it elongate but it also contracts laterally. For example, if a rubber
band is stretched, it can be noted that both the thickness and width of the
band are decreased. Likewise, a compressive force acting on a body causes
it to contract in the direction of the force and yet its sides expand laterally.

Consider a bar having an original radius r and length L and subjected to
the tensile force P in Fig. 3-21. This force elongates the bar by an amount
8, and its radius contracts by an amount &”. Strains in the longitudinal or
axial direction and in the lateral or radial direction are, respectively,

IR
'Elnng I dan Eg -

In the early 1800s, the French scientist S. D. Poisson realized that within the
elastic range the ratio of these strains is a constant, since the deformations
6 and &' are proportional. This constant is referred to as Peisson’s ratio,
v (nu), and it has a numerical value that is unique for a particular material
that is both homogeneous and isotropic. Stated mathematically it is

y = ——H (3-9)

€long

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Notice
that these strains are caused only by the axial or longitudinal force P,
i.e., no force or stress acts in a lateral direction in order to strain the
material in this direction.



A bar made of A-36 steel has the dimensions shown in Fig. 3-22. If an
axial force of P = 80 kN is applied to the bar, determine the change in
its length and the change in the dimensions of its cross section after
applying the load. The material behaves elastically.

P = 80 kN




3.7 The Shear Stress-Strain Diagram

For most engineering malterials, like the one just described, the elastic
behavior 18 linear, and so Hooke’s law for shear can be written as

Tpl

Here (5 is called the shear modulus of elasticity or the modulus of rigidity.
Its value represents the slope ol the line on the r—y diagram, that is,
¥ G = 1/ Typical values for common engineering malerials are listed
on the inside back cover. Notice that the units of measurement for €& will
Fig. 3-24 be the same as those Tor = (Pa or psi), since ¥ is measured in radians, a
dimensionless quantity.
It will be shown in Sec. 10.6 that the three material constants, F, v,
and ¢ are actually refated by the equation

6=—2L _ (3-11)

2(1 + v)

Provided F and (7 are known, the value of » can then be determined from
this equation rather than through experimental measurement. For example,
in the case of A-36steel, By = 29(10%) ksi and Gy = 11(107) ksi, so that,
from Eq.3-11,», = 0.32.



A specimen of titanium alloy 1s tested in torsion and the shear stress—
strain diagram is shown in Fig. 3-254. Determine the shear modulus G,
the proportional limit, and the ultimate shear stress. Also, determine
the maximum distance d that the top of a block of this material, shown
in Fig. 3-25b, could be displaced horizontally if the material behaves
elastically when acted upon by a shear force V. What is the magnitude
of V necessary to cause this displacement?
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An aluminum specimen shown in Fig. 3-26 has a diameter of

dy = 25 mm and a gauge length of Ly = 250 mm. If a force of 165 kN 165 kN
clongates the gauge length 1.20 mm, determine the modulus of T
elasticity. Also, determine by how much the force causes the diameter

of the specimen to contract. Take G, = 26 GPa and oy = 440 MPa.

165 kN



