TISHK INTERNATIONAL UNIVERSITY FACULTY OF ENGINEERING Department of CIVIL ENGINEERING, 2020-2021 Spring Course Information for CE 218 ENGENEERING MATHEMATICS

		Cours	se Intorr	nation for (CE 218 ENGENEE	RING MATHEM	AIICS	
	Co	urse Name:	ENGENE	ERING MATI	HEMATICS			
Co	ode	Regi	ular Seme	ester	Theoretical	Practical	Credits	ECTS
CE	218		4		3	-	3	
N	lame of Aca	Lecturer(s)- demic Title:	Saad Kh	alis -				
•	Teaching	g Assistant:	-					
	Course	Language:	English					
	C	ourse Type:	Main					
	C	Office Hours	3					
	Coi	ntact Email:	saad.ess	a@tiu.edu.iq				
			Tel:0750	4823149				
•	Teacher'	s academic profile:	Dr. Saad	Essa				
	Course	Objectives:			concepts of numeric			
			types nul	merically. To g s. To provide v	methods To teach me give an ability to apply vast knowledge in Mat ic function To understa	knowledge of math trices and their use	ematics on eng in linear algebra	ineering
			Partial de equation	erivatives , Th , One –dimen	s of several variables, ree - dimensional Lap sional Wave equation ctors, Tangent planes	lace equation, Two , The chain Rule for	- dimensional L function of two	aplace independer
				С	OURSE CONTENT			
Week	Hour	Date		Topic				
1	3	31/1-4/2/2	2021	Syllabus pres	sentation, references,	reading assignmen	ts, and scope of	the course
2	3	7-11/2/2	021	Use the paral	llelogram law to add g	eometric vectors.		
3	3	14-18/2/2	0004	Llee paramet	rio oguationa for plans	a curves and anaes	0112100	
3	3	14-10/2/2		•	ric equations for plane ocity, unit tangent and	•		netric curve:
4	3	21-25/2/2	2021		eration into tangential			
5	3	28/2-4/3/2			s product; interpret the r;interpret the vector to			
6	3	7-11/3/2	021	Recognize cy	linders and quadric s	urfaces from their C	artesian equatio	ons.
7	3	28/3-1/4/2	2021	Represent a to	function of two variabl	les as the graph of a	a surface; sketcl	h level
8	3	4-8/4/20)21	Calculate par	tial derivatives and th	e gradient.		
9	3	11-15/4/2	2021	Midterm Exar	m			
10	3	18-22/4/2		Midterm Exar				
11	3	25-29/4/2	2021	State the defi	inition of the integral o	of a function over a r	ectangle.	
12	3	2-6/5/20)21	Build on elem	nentary integration tec	hniques to evaluate	multiple integra	als efficiently
13	3	9-13/5/2			onservative vector field		ndamental theo	rem for line

14	3	16-20/5/2021	Set up and evaluate integrals over parametric surfaces.
15	3	23-27/5/2021	State and apply the Divergence Theorem.
16	3	30/5-3/6/2021	State and apply Stokes' Theorem.
17	3	6-10/6/2021	Final Exam
18	3	13-17/6/2021	Final Exam

COURSE/STUDENT LEARNING OUTCOMES

- 1 ability to use numeric methods in solving equations
- 2 ability to solve differential equations numerically
- 3 an ability to apply knowledge of mathematics on engineering problems
- 4 ability in using Matrices in solving problems of linear algebra.
- 5 ability to understand and solve using Fourier series

COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES

(Blank: no contribution, I: Introduction, P: Profecient, A: Advanced)

	Program Learning Outcomes	Cont.
1	Apply principles of mathematics, science, and engineering	Р
2	Design and conduct experiments, as well as analyze and interpret data accurately.	
3	Design an engineering system, component, or process to meet desired industrial needs.	
4	Identify, formulate and solve complex engineering problems	Р
5	Apply, in design and construction, the most modern design codes, standards and specifications such as; AISC, ACI, ASCE 7, IBC, etc.	Р
6	Use the techniques, skills, and modern engineering tools, such as surveying instruments, and designing software that are necessary for engineering practices.	
7	Apply knowledge and skills in construction project management and recognition of international standards and methodologies	
8	Manage to work with multi-disciplinary teams and communicate effectively.	
9	Identify the moral values that ought to guide the Civil Engineering profession and resolve the moral issues in the profession.	1

10	Apply the principles of sustainable development in their professional duties which go in line with the paramount safety, health and welfare of the public.
11	Analyze the impact of engineering solutions in a global and social context

ldentify the need and have the ability to engage in lifelong learning and knowledge of contemporary issues.

Prerequisites (Course Reading List and References):	Calculus I, Calculus II, differential equations
Student's obligation (Special Requirements):	Attend classes, performing class and home works, perform quizzes, participate in class discussions
	Advanced Engineering Mathematics by Kreyszig
Other Course Materials/References:	Advanced Engineering Mathematics by Wiley Advanced Engineering Mathematics by Zill
Teaching Methods (Forms	Lestings Francisco Brassattica Assignments

feaching Methods (Forms Lectures, Excersises, Presentation, Assignments of Teaching):

COURSE EVALUATION CR	RITERIA	
Method	Quantity	Percentage (%)
Attendance	1	5
Participation	1	10
Quiz	1	10
Homework	1	5
Midterm Exam(s)	1	30
Final Exam	1	40
Total		100

Examinations: Essay Questions, True-False, Multiple Choices, Short Answers

Extra Notes:

ECTS (ALLOCATED BASED ON STUDENT) WORKLOAD					
Activities	Quantity	Workload Hours for 1 quantity*	Total Workload		
Theoretical Hours	18	3	54		
Practical Hours	18	0	0		
Final Exam	1	35	35		
Attendance	1	5	5		
Participation	1	5	5		
Quiz	1	5	5		
Homework	1	10	10		
Midterm Exam(s)	1	20	20		
Total Workload			134		
ECTS Credit (Total workload/25)			5.36		

Peer review

Signature:	Signature:	Signature:
Name:	Name:	Name:
Lecturer	Head of Department	Dean