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2 Flexural Analysis and Design of RC Beams 
 

RC Beam Behavior 

 
1st stage (fig. c): At low loads, all stresses are of small magnitude and are 

proportional to strains. 

2nd stage (fig. e): When the load is increased, the tensile strength of concrete is 

reached; tension cracks develop; concrete does not transmit any tensile stresses. The 

steel resists the entire tension. If concrete compressive stresses do not exceed ≈ 0.5 

f’c, stresses and strains continue to be proportional (linear stress distribution) 

3rd stage (fig. f):  When the load is further increased, stresses and strains are no 

longer proportional; the distribution of concrete stresses on the compression side is of 

the same shape as concrete stress-strain curve. 
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Failure can be caused in one of two ways: 

 

A) When moderate amounts of reinforcement are employed, the steel 

will reach its yield point; the reinforcement stretches a large amount; the tension 

cracks widen and propagate upward; significant deflection of the beam;  

When this happens, the strains in compression zone of concrete increase to ensue 

crushing (secondary compression failure) at a load only slightly greater than that 

which cause the steel to yield. 

Such yield failure is gradual and is preceded by visible signs of distress: cracks 

and deflection. 

 

B) When large amounts of reinforcement are employed, the 

compressive strength of concrete is exhausted before the steel starts yielding. It 

has been observed that beams fail in compression when the concrete strains reach 

values of about 0.003 to 0.004. 

Such compression failure is sudden; explosive, and occurs without warning. 

 

It is good practice to dimension beams that they will fail by yielding 

of the steel (A) rather than by crushing of concrete (B). 

 

Analysis of Stresses and Strength in the Different Stages 

 
a) Stresses Elastic and Section Uncracked (figure c) 

 
Tensile stresses are less than the modulus of rupture fr.       

                                             

   
    
At the level of reinforcement:              εs = εc  ;          

                                                        fs / Es = fc / Ec  ; 

                                                        fs = (Es / Ec)  fc  

                                                          fs = n  fc    

Where n = Es / Ec  is known as the modular ratio.                                                       

   
It means that the stress in steel (fs = n  fc)   is n times that of the concrete. The analysis 

shall depend on the “transformed section”.  



Prof Dr Bayan Salim                           Chapter 2: Flex. Analysis & Design 3 

In this fictitious section, the actual area of the reinforcement is replaced with an 

equivalent concrete area equal to nAs, located at the level of steel. (Figure below) 

 

    
 

Example 1 
A rectangular beam has the dimensions: b = 250 mm, h = 650 mm, and d = 600 mm 

and is reinforced with 3 No. 25 bars so that As = 1530 mm2. The concrete cylinder 

strength f’c is 28 MPa, and the tensile strength in bending (modulus of rupture) fr is 

3.27 MPa. The yield point of the steel fy is 420 MPa. Determine the stresses caused by 

a bending moment M = 61 kN-m. 

                                                                   
Solution 

Ec = 4700 √ f’c = 24870 MPa 

n = Es / Ec = 200000 / 24870 = 8 

Add an area (n – 1)As = 7 × 1530  

                                    = 10710 mm2 {5355 mm2 (8.29 in2) as shown} 

y‾ = ∑A.y / ∑A = 342 mm from top (check this) 

I = 6,481,000,000 mm4 (check this) 

 

Compression stress at top fc = M.y‾ / I  

                                        = 61,000,000 × 342 / 6,481,000,000 = 3.22 MPa 

 

Tension stress at bottom fct = 61,000,000 × 308 / 6,481,000,000 = 2.90 MPa 

 

Since 2.90 MPa < fr = 3.27 MPa (given), no tensile cracks will form, and calculation 

by uncracked transformed section is justified.  

Steel stress fs = n M.y / I  

                       = 8 (61,000,000 × 258 / 6,481,000,000) = 19.43 MPa 

 

It is seen that at this stage the actual stresses are quite small compared with the 

available strengths of steel and concrete. 
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b) Stresses Elastic and Section Cracked (figure e) 
 

When the tensile stress fct exceeds the modulus of rupture fr , cracks form. If the 

compressive stress fc is less than ≈ 0.5 f’c and the steel stress has not reached the yield 

point (fs < fy) , both materials continue to behave elastically. 

This situation occurs in structures under normal service conditions and loads. This 

situation with regard to strain and stress distribution is that shown in figure e: 

                                        
 

The fact is that all of the concrete that is stressed in tension is assumed cracked, and 

therefore effectively absent. (Figure below: cracked transformed section) 

 
 

To determine the location of the N.A. (kd from top), the moment of the tension area 

about the axis is set equal to the moment of the compression area: 

 

                   b(kd)2/2 – nAs(d – kd) = 0             …….(1) 

 

Then determine the moment of inertia. 

 
Alternatively,  

C = (fc /2) b(kd)                               and      T = Asfs 

 

M = C(jd) =  (fc /2) b(kd) (jd)           =      M = T(jd) = Asfs(jd)         [Equilibrium] 

 

fc  = 2M / (kjbd2)                     and     fs = M / (As jd) 
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Definition: Reinforcement ratio: 

 

   ρ = As / bd 
                                                   
It is convenient to find k and j directly to establish NA distance: kd 

substituting    As = ρ bd  into equation (1), solving for k 

        ----------------------- 
k = √(ρn)2 + 2ρn − ρn 

 
then     jd = d – kd/3,    

 

j = 1 – k/3 
Values of k and j are tabulated (Nilson Table A6): 

 

Example 2 
The beam of Example 1 is subjected to a bending moment M = 122 kN-m (rather than 

61 kN-m). Calculate the relevant properties and stresses. 

 

Solution 

Check the section is cracked: 

Tension stress at bottom fct = 122,000,000 × 308 / 6,481,000,000 = 5.8 MPa 

Since 5.8 MPa > fr = 3.27 MPa (given), tensile cracks will form, and calculation must 

adapt the cracked transformed section.  

 

Equation 1, b(kd)2/2 – nAs(d – kd) = 0, with b = 250 mm,  d = 600 mm,   n = 8, and As 

= 1530 mm2 inserted, gives 

kd = 198 mm (distance to N.A.) 

k = 198/600 = 0.33,              

j = 1 – k/3 = 0.89 

fs = M / As jd = 122,000,000/[1530 × 0.89 × 600] = 149.3 MPa 

fc = 2M / kjbd2 = 2×122,000,000/[0.33×0.89×250×6002] = 9.23 MPa 

 

or, another way to find k: 

ρ = As / bd = 1530 / (250 × 600) = 0.0102,  ρn = 0.0102× 8 = 0.0816 

        -----------------------                   
k = √(ρn)2 + 2ρn − ρn = √(0.0816)2 + 2(0.0816) − 0.0816 = 0.33 as before. 

 

Notes: (compared with Example 1; doubling M) 

1. N.A. has moved upward: changed from 342 to 198 mm. 

2. The steel stress changed from 19.43 to 149.3 MPa (about 8 times). 

3. The concrete compressive stress has increased from 3.22 to 9.23 MPa (about 3 

times). 

4. The moment of inertia of cracked section (2,625,000,000 mm4 check this!) is less 

than that of uncracked section (6,481,000,000 mm4). This affects the magnitude 

of the deflection. 
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c) Flexural Strength (figure f) 
At high loads, close to failure, the distribution of stresses and strains is that of fig. f:     

                                 
Stress and strain distributions at ultimate load are assumed as shown in fig. below: 

 
For failure mode A, two criteria are implied  

- fs = fy  

- The concrete crushes when the maximum strain reaches εu = 0.003. 

It is necessary to know, for a given distance c of N.A., 

1. The total resultant compression force C in the concrete. 

2. Its vertical location, i.e., its distance from the outer compression fiber. 

 

In rectangular beams, area in compression is bc, and C = favbc 

Let α = fav / f’c then C = α f’c bc 

The location of C is at βc from top. 

 

Knowing α and β will define the compressive stresses. 

 

If α and β are known, then equilibrium requires that 

C = T    or     α f’c bc = As fs                     

Also 

M = Tz = As fs (d – βc)   

Or M = α f’c bc(d – βc)   

 

Set fs = fy then c = As fy / α f’c b 

Using As = ρ bd, then c = ρ fy d / α f’c 

 

Substitute, Mn is then obtained 

Mn = ρ fy bd2(1 – β ρ fy/ α f’c)  
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From extensive experimental work, the values of α and β have shown to be as in the 

figure below (for f’c  ≤ 28 MPa, α = 0.72 and β = 0.425) 

 

 
 
Now, the nominal moment equation becomes: 

 

 

 

 

 

Balanced reinforcement ratio  ρb 

The balanced reinforcement ratio, ρb represents that amount of reinforcement 

necessary for the beam to fail by crushing of the concrete at the same load that causes 

the steel to yield. 

Hooke’s law:   fs = εsEs 

From strain distribution (see fig.), similar triangles give 

                               fs = εu Es(d – c)/c 

Setting fs = fy, and substituting εy for fy /Es, the value of c defining the unique position 

of the N.A. corresponding to simultaneous crushing of the concrete and initiation of 

yielding in the steel, 

                                       c = d. εu/( εu + εy) 

 

Substituting c in equation C = T    or    α f’c bc = As fs   with Asfs = ρbdfy, the ρb is 

obtained 

                                     ρb = (α f’c / fy )[ εu/( εu + εy)] 

 

 

 

 

Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c)  
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Example 3 
Determine the nominal moment Mn at which the beam of Examples 1 and 2 will fail. 

Solution 
ρ = As / bd = 1530 / (250×600) = 0.0102 (always write ρ with 4 digits) 

check  

ρb = (α f’c / fy )[ εu/( εu + εy)] = 0.0282        (α = 0.72) 

Since ρ < ρb , the beam will fail in tension by yielding of the steel, its nominal 

moment is 

             Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c) 

                   = 0.0102 × 420 × 250 × 6002 (1 – 0.59 × 0.0102 × 420 / 28) 

                   = 350,800,000 N-mm = 350.8 kN-m 

At this Mn, the distance to neutral axis is 

c = ρ fy d / α f’c  

   = 0.0102 × 420 × 600 / (0.72 × 28) = 127.5 mm 

 

Summary  

 Ex 1:Uncracked Ex 2:Cracked Ex 3:Ultimate 

NA from top,mm 342 198 127.5 

fc / fs  (MPa/MPa) 3.22 / 19.43 9.23 / 149.3 28 / 420 

M , kN-m 61 122 350.8 

 

The differences between various stages (as the load is increased) are 

1. The migration of the N.A. toward the compression edge. 

2. The increase in steel stress. 

3. The increase in concrete compressive stress. 

 

 

 

Design of Tension-Reinforced Rectangular Beams 
To provide sufficient strength to RC structures: 

1. The nominal strength is modified by a strength reduction factor φ, less than 

unity, to obtain the design strength. 

2. The required strength is found by applying load factors γ, greater than unity, to 

loads actually expected (service loads). 

Thus, RC members are proportioned such that Mu ≤ φMn; Vu ≤ φVn;      Pu ≤ φPn 

where subscripts n denotes the nominal strengths in flexure, shear, and axial load 

respectively, and u denote the factored load moment, shear and axial load. 

See page 4, chapter 1 of the lecture notes. 

 

a. Equivalent Rectangular Stress Distribution 
It was noted that the actual shape of the concrete compressive stress distribution 

varies considerably. The magnitude C and location βc of the resultant of the concrete 

compressive stresses are obtained from experiments and expressed in the two 

parameters α and β. 
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For simplicity, the actual stress distribution is replaced by an equivalent one of simple 

rectangular outline. See next figure. 

The conditions are that the magnitude of C and its location must be the same in the 

equivalent rectangular as in the actual stress distribution. 

 
 
C = α f’c bc =  γ f’c ab            from which    γ = α c / a 

With a = β1c,    this gives γ = α / β1 

The force C is located at the same distance: β1 = 2β. 

γ = α / β1 = α / 2β is seen independent of f’c and can be taken as 0.85 throughout (e.g. 

0.72/(2×0.425) = 0.85): 

The force C:                         C = 0.85 f’c ab 

The distance a:                       a = β1c 

β1 = 0.85                      ………………….         for  f’c ≤ 28 MPa 

β1 = 0.85 – 0.05 (f’c − 28) / 7  ……………       for  f’c > 28 MPa 

0.65 ≤ β1 ≤ 0.85    

b. Balanced Strain Condition 
From strain diagram  c = d. εu / (εu + εy) 

Equilibrium C = T ;  0.85 β1 f’c bc  = ρbbdfy 

 

 ρb = 0.85 β1 (f’c /  fy)[ εu / (εu + εy)] 

 

c. Under-reinforced Beams 
To ensure that failure, if it occurs, will be by yielding of the steel, not by crushing of 

the concrete, this can be done, theoretically by requiring ρ < ρb 

In actual practice, the upper limit on ρ should be below ρb for the following reasons: 

1. To get significant yielding before failure. 

2. Material properties are never known exactly. 

3. Strain-hardening of the steel may lead to concrete compression failure. 

4. Actual steel area provided will always be equal to or larger than required. 

5. Lower ρ increases deflection and thus provides warning prior to failure. 
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d. ACI Code Provisions for Under-reinforced Beams 
ACI Code defines the safe limit of maximum reinforcement based on the net 

tensile strain εt of the reinforcement farthest from the compression face of the 

concrete at depth dt 

1. The minimum tensile reinforcement strain allowed at nominal strength: 

εt = εu.(dt – c) / c 

ρ = 0.85 β1 (f’c / fy)(dt  / d)[ εu / (εu + εt)] 

conservatively  

ρ = 0.85 β1 (f’c / fy)[ εu / (εu + εt)] 

 

To ensure under-reinforced behavior, ACI Code 21.2 establishes a minimum net 

tensile strain εt  at nominal of (εy + 0.003)for members subjected to axial loads less 

that 0.10 f’c Ag, where is the gross area of the cross section. Substituting in ρ 

equation: 

 

 ρmax  = 0.85 β1 (f’c /  fy)[ εu / (εu + εy + 0.003)] 

                         
2. Allowing strength reduction factors that depend on the tensile strain at 

nominal strength. The Code defines: 

a. Tension-controlled member: The one with a net tensile strain εt ≥ (εy + 

0.003). the corresponding strength reduction factor φ = 0.9. 

 

b. Compression-controlled member: The one with a net tensile strain εt ≤ 

0.002. The corresponding strength reduction factor φ = 0.65. For spirally-

reinforced members φ  = 0.75 

 

For εt between εy and (εy + 0.003), φ varies linearly, and ACI Code allows 

linear interpolation of φ based on εt. see Table below: 

 

 
                  
The depth of equivalent rectangular stress block a: 

Since c = a / β1, it is more convenient to compute c/dt  rather than ρ or net εt, see 

Figure. Maximum value of c/dt = 0.375 for εt ≥ 0.005 

 



Prof Dr Bayan Salim                           Chapter 2: Flex. Analysis & Design 11 

 
 
The nominal flexural strength is given by (see figure below)   

    

Mn = Asfy(d – a/2),  a = Asfy / 0.85 f’c b 

 

 
 

Example 4 
Using the equivalent rectangular stress distribution, directly calculate the nominal 

strength of the beam previously analyzed in Example 3. Recall b = 250 mm, d = 600 

mm, As = 1530 mm2, f’c = 28 MPa, fy = 420 MPa. 

Solution 

β1 = 0.85 (f’c = 28 MPa) 

ρmax = 0.85 β1 (f’c /  fy)[εu /(εu + εy + 0.003)] 
         = 0.85×0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181 

Actual ρ = 1530 /(250×600) = 0.0102  

Since ρ < ρmax , the member will fail by yielding of steel. 

Alternatively, recall c = 127.5 mm, 

c/dt = 127.5/600 = 0.213 <0.375, the member will fail by yielding of steel  

a = Asfy / 0.85 f’c b = 1530×420/(0.85×28×250) = 108 mm 

Mn = Asfy(d – a/2)=1530×420(600 – 108/2)=350.9×106Nmm =350.9kNm 

Moment equation can be re written (as derived previously) as follows: 

    Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c) 

      = 0.0102×420×250×6002 (1 – 0.59×0.0102×420/28)[10– 6] = 350.8 kNm 
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This equation:   Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c)  may be simplified further for everyday 

design as follows 

 

                                                Mn = Rbd2 

In which 

                                 R = ρ fy (1 – 0.59 ρ fy/ f’c)         (MPa) 

 

The values of the flexural resistance factor R are tabulated in Appendix A5 (Nilson)    

 

In accordance with safety the safety provisions of the ACI Code, the nominal flexural 

strength Mn is reduced by imposing the strength reduction factor φ to obtain the design 

strength φ Mn 

                                          φ Mn = φ Asfy(d – a/2) 
 

Or, alternatively,        φ Mn = φ ρ fy bd2(1 – 0.59 ρ fy/ f’c) 

Or                                φ Mn = φ R bd2      

 

Example 4 (continued): Since ρ<ρmax (or c/dt < 0.375), then εt > (εy + 0.003). Therefore, 

φ = 0.9 and design capacity is φ Mn = 0.9×350.9 = 315.8 kNm 

 

e. Minimum Reinforcement Ratio 
In very lightly reinforced beams, if the flexural strength < the moment that produce 

cracking, the beam will fail immediately and without warning upon formation of the 

first flexural crack. 

To ensure against this type of failure, a lower limit can be established for the 

reinforcement.  

According to ACI Code 9.6, at any section where tensile reinforcement is required by 

analysis, the area As provided must not be less than 

 

       As,min = ρmin bwd 

 

 ρmin = 0.25 √f’c / fy ≥ 1.4 / fy 
 

                                                                                   fy ≤ 560 MPa 

f. Examples of Rectangular Beams 

 

Example 5 (Analysis problem) 
A rectangular beam has width 300 mm and effective depth 490 mm. it is reinforced 

with 4 No.29 (#9) bars in one row. If fy = 420 MPa and f’c = 28 MPa, what is the 

nominal flexural strength, and what is the maximum moment that can be utilized in 

design, according to ACI Code? 

Solution: 

Area of 4 No.29 bars = 4 × 645 = 2580 mm2  (Table A2, Nilson) 

a = Asfy / 0.85 f’c b = 2580×420/(0.85×28×300) = 151.8 mm 

c = a / β1 = 151.8 / 0.85 = 178.5 mm 
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c / dt = 178.5 / 490 = 0.364  (< 0.375), i.e. (εt < εy + 0.003)                                 

Thus, the beam is under-reinforced 

or, ρ = As/bd = 2580 / (300 × 490) = 0.0176  

ρmax = 0.85 β1 (f’c /  fy)[εu /(εu + εy + 0.003)] 
         = 0.85×0.85 (28/420)[0.003 /(0.003 + 0.002 + 0.003)] = 0.0181 

Since c / dt = 0.364  (< 0.375) and ρ = As/bd = 0.0176 < ρmax = 0.0181 

Then φ = 0.90 

φMn = φAsfy(d – a/2)= 0.90 ×2580×420(490 – 151.8/2) 

                                  = 0.90 × 448.7×106 Nmm = 403.8 kNm 

Check ρmin = 0.25 √28 / 420 ≥ 1.4 / 420 = 0.0033. Thus ρmin < ρ = 0.0176 < ρmax is 

satisfactory. 

 

Example 6 (Design problem) 
Find the concrete cross section and the steel area required for a simply supported 

rectangular beam with a span of 4.5 m that is to carry a computed dead load of 20 

kN/m and a service live load of 31 kN/m. Material strengths are f’c = 28 MPa and fy 

= 420 MPa. 

Solution: 

Factored load wu = 1.2 D + 1.6 L 

                             = 1.2 × 20 + 1.6 × 31 = 73.6 kN/m 

Mu = wu l2 / 8 = 73.6 × 4.52 / 8 = 186.3 kNm 

To minimize section dimensions, it is desirable to select the maximum permissible 

reinforcement ratio: 

ρmax = 0.85 β1 (f’c /  fy)[εu /(εu + εy + 0.003)] 
         = 0.85×0.85 (28/420)[0.003 /(0.003 + εy + 0.003)] = 0.0181 

     φ = 0.9 (εt = εy + 0.003) 

Mu = φ Mn 

186.3 × 106 = 0.9 × 0.0181×420 bd2 ( 1 – 0.59×0.0181×420/28) 

bd2 = 32,420,000 mm2 

Say b = 250 mm, d = 360 mm, then 

As, required = 0.0181 × 250 × 360 = 1630 mm2 

USE 2 No.32 (1638 mm2) 

Total depth of section h = dt + db/2 + db (stirrup) + concrete cover 

                                       = 360 + 16 + 13 + 40 = 429 mm 

Round – up to the nearest 25 mm:  h = 450 mm. 

Note: 

1. The effective depth will be increased: d = 450 – 40 – 13 – 16 = 381 mm. 

Improved economy may be possible by refining the steel area based on the actual, 

larger d. 

2. Infinite number of solutions is possible depending upon the reinforcement ratio 

selected. 

 

Example 7: (Design problem: section dimensions are given, As is required) 
Find the steel area required to resist a moment Mu of 150 kNm using a concrete 

section having b = 250 mm, d = 435 mm, and h = 500 mm. 

f’c = 28 MPa and fy = 420 MPa. 
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Solution: 

Assume a = 100 mm 

φMn = φAsfy(d – a/2) 

As= φMn / φfy(d – a/2) = 150×106 / 0.9×420 (435 – 100/2) = 1031 mm2 

Check a = Asfy / 0.85 f’c b = 1031×420 / 0.85× 28 ×250 = 72.8 mm 

Next assume a = 70 mm and recalculate As: 

As = 150×106 / 0.9×420 (435 – 70/2) = 992 mm2  

No further iteration is required. USE As = 992 mm2 (2 No.25 bars As = 1080 mm2) 

Check ρ = 0.0091 < ρmax,  then φ = 0.9 OK   

  

Example 8: (section dimensions are given, As is required ; effect of φ) 
A 6 m long simple span beam of height = 400 mm and the width = 300 mm. The 

following loads and material properties are given: wd = 11 kN/m, wl = 24 kN/m, f’c = 

35 MPa, and fy = 420 MPa. Determine the reinforcement of the beam. 

Solution: 

Factored load wu = 1.2 × 11 + 1.6 × 24 = 51.6 kN/m 

Mu = wu l2/ 8 = 51.6 × 62/ 8 = 232.2 kNm 

 

Assume a = 100 and φ = 0.9 

d = 400 – 65 = 335 mm (assuming 65 mm concrete cover from centroid of bars) 

As= Mu / φfy(d – a/2)  = 232.2 × 106/[0.9×420(335 – 50) = 2156 mm2 

Try 2 No.32 bars and 1 No. 29 bar, As, provided = 2283 mm2 

Check a = Asfy / 0.85 f’c b = 2283×420 / 0.85× 35 ×300 = 107.4 mm         107.4 mm > 

100 mm assumed; continue 

     Mn = Asfy(d – a/2) = 2283×420 ( 335 – 107.4/2) 10-6 = 269.7 kNm 

     Mu = φ Mn = 0.9 × 269.7 = 242.7 kNm (adequate: > 232.2 applied) 

     To validate the selection of φ = 0.9, the net εt must be checked: 

     c = a /β1 = 107.4 / 0.80 = 134.3 mm. 

     c/d = 134.3/335 = 0.401 > 0.375 so εt  > εy + 0.003 is not satisfied. 

      

    Try increasing the height to 450 mm;  

    

    Repeating the calculations:   say a = 90 mm 

     As= Mu / φfy(d – a/2)  = 232.2 × 106/[0.9×420(385 – 45) = 1807 mm2 

    Try 3 No.29 bars, As, provided = 1935 mm2 

    

    a = Asfy / 0.85 f’c b = 1935×420 / 0.85× 35 ×300 = 91 mm ok          

    c = a /β1 = 91 / 0.80 = 114 mm 

   c/d = 114/385 = 0.296 < 0.375 so εt  < εy + 0.003 (satisfied). 

    Thus, φ = 0.90 

 

    Mn = Asfy(d – a/2) = 1935×420 ( 385 – 91/2) 10-6 = 275.9 kNm 

     

    Mu = φ Mn = 0.90 × 275.9 = 248.3 kNm (adequate > 232.2) 

 

 



Prof Dr Bayan Salim                           Chapter 2: Flex. Analysis & Design 15 

g. Over-reinforced Beams 
Occasionally, it may be necessary to calculate the flexural strength of an over-

reinforced compression controlled member for which fs < fy at flexural failure. 

φ Mn = φAsfs (d – a/2)       φ = 0.65     &     fs = εs Es 

                              

In this case, εs < εy; in terms of εu and c: 

From strain diagram; εs = εu (d – c) / c         … (1) 

From equilibrium; 0.85 β1 f’c bc = εs Es bd   … (2) 

     Solve simultaneously to find εs  

 

h. Design Aids 
In practice, the design of beams and other RC members is greatly facilitated by the 

use of design aids. 

Tables A.1, A.2, A.4 through A.7, and Graph A.1 relate directly to this chapter. 

For design purposes, there are two possible approaches: 

1st Approach: Start with selecting the optimum ρ and then calculating concrete 

dimensions, as follows: 

1. Set Mu = φRbd2 

2. Table A.4: Select an appropriate ρ between ρmax and ρmin . Often a ratio of about 

(0.6 ρmax) will be an economical and practical choice. 

If ρ ≤ ρmax  then φ = 0.9 

If ρ > ρmax then increase h and recalculate, or use compression reinf. (p.18) 

3. Table A.5: Find the flexural resistance factor R. Then bd2 = Mu/ φR  

4. Choose b and d to meet that requirement. Often d = 2 to 3 times b is appropriate. 

5. Calculate As = ρ bd , then use Table A.2 to choose the size and no. of bars. 

6. Refer to Table A.7 to ensure that the selected beam width will provide room for 

the bars chosen, with adequate concrete cover and spacing. 

2nd Approach: Start with selecting concrete dimensions, after which the required 

reinforcement is found, as follows: 

1. Select b and d, then calculate R = Mu / φbd2 

2. Use Table A.5 to find ρ < ρmax 

3. Calculate As = ρ bd then use Table A.2 to choose the size and no. of bars. 

4. Refer to Table A.7 to ensure that the selected beam width will provide room for 

the bars chosen, with adequate concrete cover and spacing. 

Example 9: USE DESIGN AIDS 
A rectangular beam has width 300 mm and effective depth 490 mm. It is reinforced 

with 4 No.29 (#9) bars in one row. If fy = 420 MPa and f’c = 28 MPa, what is the 

nominal flexural strength, and what is the maximum moment that can be utilized in 

design, according to ACI Code? 

Solution: 

From Table A.2, 4 No.29 bars provide As = 2580 mm2 

ρ = As / bd = 0.0176 

Table A.4: this ρ is below ρmax (0.0181) and above ρmin (0.0033) 

Table A.5b: R = 6.24 MPa (by interpolation bet. 6.07&6.36) 

Mu = φMn = 0.90 Rbd2 =   404.5 kNm 
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Example 10: USE DESIGN AIDS 
Find the concrete cross section and the steel area required for a simply supported 

rectangular beam. Mu = 186.3 kNm. Material strengths are f’c = 28 MPa and fy = 420 

MPa. 

Solution: 

Table A.4, ρmax = 0.0181. For economy ρ = 0.6(0.0181) = 0.0109. 

Table A.5a, by interpolation R = 4.14 MPa. Then 

bd2 = Mu/ φR = 50 × 106 mm3 

b = 250 mm and d = 447.2 mm will satisfy this, but the depth will be rounded to 450 

mm, to provide a total depth of 520 mm. It follows that 

R = Mu / φbd2 = 4.09 MPa 

Table A.5a, by interpolation, ρ = 0.0108 

As = 0.0108 (250)(450) = 1215  mm2 (Use 2 No.29; As = 1290 mm2) 

Example 11: USE DESIGN AIDS 
Find the steel area required to resist a moment Mu of 150 kNm using a concrete 

section having b = 250 mm, d = 435 mm, and h = 500 mm. 

f’c = 28 MPa and fy = 420 MPa. 

Solution: 

R = Mu / φbd2 = 3.52 MPa 

Table A.5a, ρ = 0.0091 giving As = 0.0091(250)(435) = 990 mm2 

USE 2 No.25 bars. (As = 1020 mm2) 

 

Practical Considerations in the Design of Beams 
a. Concrete Protection for Reinforcement 
To provide the steel with adequate concrete protection against fire and corrosion, the 

designer must maintain a certain minimum thickness of concrete cover outside of the 

outermost steel. The thickness required will vary, depending upon the type of member 

and conditions of exposure. 

The requirements of concrete cover in beams and slabs are shown in figure below: 

 

        ¾ in = 20 mm, 1 in = 25 mm, 1½ in = 40 mm, 2½ in = 65 mm 
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b. Selection of Bars and Bar Spacing 

It is often desirable to mix bar sizes to meet steel area requirements more closely. In 

general, mixed bars should be of comparable diameter, and generally should be 

arranged symmetrically about the vertical centerline. 

 

ACI Code 25.2 specifies that the minimum clear distance between adjacent bars shall 

not be less than the nominal diameter of the bars db , 25 mm, or (4/3 dagg.). (for 

columns 1½ db or 40 mm). 

Where beam reinforcement is placed in two or more layers, the clear distance 

between layers must not be less than 25 mm, and the bars in the upper layer should be 

placed directly above those in the bottom layer. 

The maximum number of bars that can be placed in a beam of given width is limited 

by bar diameter, by concrete cover, and by the maximum size of aggregate specified. 

See Table A.7.  

 

Rectangular Beams with Tension and Compression Reinforcement 
If a beam cross section is limited because of architectural or other considerations, it 

may happen that the concrete cannot develop the compression force required to resist 

the given bending moment. In this case, reinforcement is added in the compression 

zone, resulting in a doubly reinforced beam, i.e., with compression as well as tension 

reinforcement (see Fig.): 

 

a. Tension and Compression Steel Both at Yield Stress 
In a doubly reinforced beam; 

If  ρ ≤ ρmax , disregard the compression bars. 

If ρ > ρmax , the total resisting moment is the sum of two parts: 

The 1st part: Mn1 = A’s fy (d – d’) 

The 2nd part: Mn2 = (As – A’s) fy (d – a/2) 

a = (As − A’s)fy / 0.85 f’c b  
ρ = As / bd       and       ρ’= A’s / bd 

a = (ρ − ρ’) fy d / 0.85 f’c  

 

The total nominal moment: 

Mn = Mn1 + Mn2  = A’s fy (d – d’) + (As – A’s) fy (d – a/2) 

                                                        
The maximum reinforcement ratio: (φ = 0.9) 

                                       ρ‾max  = ρmax + ρ’ 
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Example 12: (Analysis problem) 
A rectangular beam has a width of 300 mm and an effective depth to the centroid of 

the tension reinforcement of 600 mm. The tension reinforcement consists of three 

No.32 bars and three No.29, in two rows. Compression reinforcement consisting of 

two No.19 bars is placed 65 mm from the compression face of the beam. If   f’c = 35 

MPa and fy = 420 MPa, what is the design moment capacity of the beam? 

Solution: 

As = 4392 mm2,   ρ = 4392 / (300×600) = 0.0244 

A’s = 568 mm2,  ρ’ = 568 / (300×600) = 0.0032 

Check the beam first as a singly reinforced beam to see if the compression bars can be 

disregarded: 

ρmax = 0.85 β1 (f’c /  fy)[ εu / (εu + εy + 0.003)] = 0.0213 (or use Table A.4) 

Actual ρ = 0.0244 > ρmax , so the beam must be analyzed as a doubly reinforced. 

ρ‾cy  = 0.85 β1 (f’c /  fy)(d’ / d)[ εu / (εu − εy)] + ρ’ 

       = 0.85×0.8×(35/420)×(65/600)×[0.003/(0.003 – 0.0021)] + 0.0032 = 0.0237 

Actual ρ = 0.0244 > ρ‾cy  , so the compression bars will yield when the beam fails. 

     ρ‾max  = ρmax + ρ’ = 0.0213 + 0.0032 = 0.0245 

Actual ρ = 0.0244 < ρ‾max , as required. Then 

a = (As − A’s)fy / 0.85 f’c b  
   = (4392 – 568) 420 /(0.85×35×300) = 180 mm 

c = a / β1 = 180 / 0.80 = 225 mm 

εt = εu(d – c)/c = 0.003 (600 – 225)/225 = 0.005 = εy + 0.003, thus φ = 0.90 OK 

Mn = Mn1 + Mn2  = A’s fy (d – d’) + (As – A’s) fy (d – a/2) 

= [568×420(600 – 65) + 3824×420 (600 – 180/2)] ×10−6 = 946.7 kNm 

Design strength is 

φ Mn = 0.90 × 946.7 = 852 kNm 
 

b. Compression Steel below Yield Stress 
In many cases, the compression bars will below the yield stress at failure (f’s < fy). 

From geometry of the strain diagram, fig. b: 

c = d’[ εu / (εu − εy)] 
Sum of forces in fig. c gives ρ‾cy : the minimum ratio that will ensure yielding of 

compression steel, 

 

ρ‾cy  = 0.85 β1 (f’c /  fy)(d’ / d)[ εu / (εu − εy)] + ρ’ 

  

From figures b and c:     ρ‾max  = ρmax  + ρ’(f’s / fy) 

where  

f’s = Es ε’
s = Es [εu − (d’ / d) (εu + εy)] ≤  fy 

 

     for εt = (εy + 0.003); φ = 0.9 

f’s = Es ε’
s = Es [εu − (d’ / d) (εu + εy + 0.003)] ≤  fy 

Hence, the max reinforcement ratio is 

ρ‾max  = ρmax + ρ’(f’s / fy) 
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If the tensile reinforcement ratio is less than ρ‾max and less than ρ‾cy , then the tensile 

steel is at the yield stress at failure but the compression steel is not, and new 

equations must be developed: 

From strain diagram: f’s = εu Es(c – d’) / c                                    

From Equilibrium: Asfy = 0.85β1 f’c bc + A’s εu Es(c – d’) / c                            

Solve for c, and knowing a = β1 c 

                    Mn = 0.85 f’c ab (d – a/2) + A’s f’s (d – d’)  

 

Example 13: (Design problem) 
A rectangular beam that must carry a service live load of 36 kN/m and a calculated 

dead load of 15.3 kN/m on an 5.5 m simple span is limited in cross section for 

architectural reasons to 250 mm width and 500 mm (20 in) total depth. If f’c = 28 

MPa and fy = 420 MPa, what steel area(s) must be provided? 

Solution: 

Factored load, wu = 1.2 × 15.3 + 1.6 × 36 = 75.96 kN/m 

Mu = 75.96 (5.5)2/8 = 287.2 kNm 

Assume tension steel centroid is 100mm above the bottom face and assume compression 

steel, if required, be placed 65mm below the top surface. Then d = 400mm, d’ = 65mm 

Check if the section is singly reinforced: 

Table A.4: ρmax  = 0.0181 for φ = 0.9 

As = 250×400×0.0181 = 1810 mm2 

a = 1810×420 / 0.85×28×250 = 127.8 mm 

c = a / β1 = 127.8 / 0.85 = 150.3 mm 

Mn = Asfs (d – a/2) = 1810×420(400 – 127.8/2)10– 6 = 255.5 kNm    

(Alternatively, Table A.5b, R = 6.39,  Mn = Rbd2 = 255.5 kNm) 

φ Mn = 230 kNm < 287.2 kNm, therefore compression steel is needed as well as 

additional tension steel. 

The remaining moment to be carried by compression steel couple: 

M1 = 287.2 – 230 = 57.2 kNm 

From strain diagram 

ε’s = 0.003 (150.3 – 65)/150.3 = 0.00170 < εy = 0.002 [thus f’s < fy] 

f’s = ε’s Es = 0.00170 × 200000 = 340 MPa 

A’s = 57.2 × 106 / 0.9[340 (400 – 65)] = 558 mm2 

Total area of tensile reinforcement at 420 MPa: 

As = 1810 + 558(340/420) = 2262 mm2 

USE 2 No.19 bars (568 mm2) as compression reinforcement and 4 No.29 bars (2580 

mm2) as tension reinforcement. To place tension reinforcement, 2 rows of 2 bars each are 

used. See figure. [2½ in = 65 mm, 14¾ in = 370 mm, 10 in = 250 mm, 20 in = 500mm.] 

                                                 
                                                                   60mm       70mm                                                                 
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T Beams 
RC floors, roofs, decks, etc., are almost always monolithic. Beam stirrups and bent 

bars extend up into the slab. It is evident, therefore, that a part of the slab will act with 

the upper part of the beam to resist longitudinal compression. 

The resulting section is T-shaped rather than rectangular. 

The slab forms the beam flange, while the part of the beam projecting below the slab 

is called the web or stem. 

 

a. Effective Flange Width 

 

 
The effective flange width, b, has been found to depend on the beam span l, the 

thickness of the slab hf, and the clear distance to the next beam lc. 

ACI Code requires that: 

 

1. For symmetric T beams: 

b ≤ l /4 

(b – bw)/2 ≤ 8 hf 

(b – bw)/2 ≤ lc /2 

 

2. For beams having a slab on one side only: 

(b – bw) ≤ l /12 

(b – bw) ≤ 6 hf 
(b – bw) ≤ lc /2 

 

3. For isolated beams: 

hf ≥ bw/2 

b ≤ 4 bw 

 

b. Structural Analysis 

The neutral axis NA of a T beam may be either in the flange or in the web, depending 

upon the proportions of the cross section, the amount of tensile steel, and the strengths of 

the materials. 

If the depth of NA ≤ hf, the beam can be analyzed as if it were a rectangular beam of 

width b. (fig. a). This is because areas (1) and (2) are entirely in tension zone and thus 

disregarded in flexural calculations. 
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When the NA is in the web (fig. b), method is developed to account for the actual T-

shaped compressive zone. 

            
It is convenient to divide the total tensile steel into two parts. The first part, Asf , 

represents the steel area required to balance the compressive force in the overhanging 

portions. 

                                        Asf  = 0.85 f’c(b – bw)hf / fy 

                                         Mn1 = Asf  fy(d − hf /2) 

The remaining steel area, (As – Asf), is balanced by the compression in the rectangular 

portion of the beam. In this zone: 

                                      a = (As − Asf) fy / (0.85 f’c bw)  

                                       Mn2 = (As − Asf) fy (d − a /2) 

The total nominal resisting moment is the sum of the parts: 

Mn = Mn1 + Mn2 = Asf  fy(d − hf /2) + (As − Asf) fy (d − a /2) 

From strain diagram: 

                                        c/dt ≤ εu /(εu + εt) 

Setting εu = 0.003 and  εt = εy + 0.003 provides a max c/dt = 0.375 

The condition of tensile steel yield to occur prior to concrete crushing is satisfied if  

                              ρw,max = ρmax + ρf 

where 

ρw = As / bwd            and               ρf = As f / bwd 

The minimum reinforcement is based on bw: 

         ρmin = 0.25 √f’c / fy ≥ 1.4 / fy  
As,min = ρmin bwd 

 

Example 14: (T Beam Analysis problem) 
An isolated T beam is composed of a flange 700 mm wide and 150 mm deep cast 

monolithically with a web of 250 mm width that extends 600 mm below the bottom 
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surface of the flange to produce a beam of 750 mm total depth. Tensile reinforcement 

consists of 6 No.32 bars placed in two horizontal rows. The centroid of the bar group is 

650 mm from the top of the beam. If f’c = 21 MPa and fy = 420 MPa, what is the design 

moment capacity of the beam? 

Solution: 

Check flange dimensions, hf ≥ bw/2 : 150 > 250/2 , 150 > 125 

b ≤ 4 bw : 700 < 4×250 , 700 < 1000   OK 

Area of 6No.32 = 4914 mm2     

Check NA location: 

a = As fy /(0.85 f’cb)= 4914×420/0.85×21×700 = 165.2 mm > hf = 150mm 

so T beam analysis is required. 

     Asf  = 0.85 f’c(b – bw)hf / fy = 0.85×21(700 – 250)×150 /420 = 2869 mm2 

     Mn1 = Asf  fy(d − hf /2) = 2860×420 (650 – 150/2)×10– 6 = 692.8 kNm 

     a = (As − Asf) fy / (0.85 f’c bw) = 2045×420/(0.85×21×250) = 192.5 mm 

     Mn2 =(As − Asf) fy (d − a /2)=2045×420 (650 – 192.5/2)×10– 6=475.6 kNm 

c = a / β1 = 192.5 / 0.85 = 226.5 mm 

dt = 685 mm to the lowest bar, 

c / dt = 226.5 / 685 = 0.331 < 0.375, so the εt > (εy + 0.003) = 0.005 → φ = 0.9 

φMn = 0.9 (692.9 + 475.6) = 1052 kNm 

 

Example 15: (T Beam Design problem) 
A floor system consists of a 75 mm concrete slab supported by continuous T beams with 

a 7.5 m span, 1.2 m on centers. Web dimensions are bw = 275 mm and d = 500 mm. 

What tensile steel area is required at midspan to resist a factored moment of 725 kNm if 

fy = 420 MPa and f’c = 21 MPa? 

Solution: 

Determine effective flange width: 

b = 16 hf + bw = 16×75 + 275 = 1475 mm = 1.475 m 

b = l / 4 = 7.5 / 4 = 1.875 m 

b = 1.2 m (c. / c. spacing) 

The controlling b = 1.2 m 

Assume a = hf = 75 mm 

d – a /2 = 500 – 75/2 = 462.5 mm 

Trial: As = Mu / φ fy (d – a/2) = 725×106 /[0.9×420×462.5] = 4147 mm2 

Check a = As fy /(0.85 f’cb)= 4147×420/[0.85×21×1200] = 81.3 mm > hf 

T beam design is required and φ = 0.9 is assumed. 

Asf  = 0.85 f’c(b – bw)hf / fy = 0.85×21(1200 – 250)×75 /420 = 2948 mm2 

φMn1 =φ Asf  fy(d − hf /2) = 0.9[2948×420 (500 – 75/2)×10– 6 = 515.4 kNm 

φMn2 = Mn − φMn1 = 725 – 515.4 = 209.6 kNm 

Assume a = 100 mm 

As −Asf = φMn2/ φ fy (d – a/2)= 209.6 ×106 /0.9×420×(500 – 50) = 1232 mm2 

Check a = (As − Asf) fy /(0.85 f’cbw)= 1232×420/[0.85×21×275] = 105.4 mm ≈ 100 mm ok 

As = Asf + As − Asf  = 2948 + 1232 = 4181 mm2  

Check: c = a / β1 = 105.4 / 0.85 = 124 mm 

c / dt = 124 / 500 = 0.248 < 0.375, so εt > (εy + 0.003) = 0.005 → φ = 0.9 

     Design is satisfactory. 


