Prof Dr Bayan Salim Chapter 2:Flex Analysis & Design

2 Flexural Analysis and Design of RC Beams

Fundamental assumptions
1. A cross section that was plane before loading remains plane under
load.
2. The bending stress fat any point depends on the strain at that point in
a manner given by the stress-strain diagram of the material. (See Fig.)
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3. Distribution of shear stresses over the depth of the section depends on
the shape of the cross section and the stress-strain diagram.

4. At any point in the beam there are inclined stresses of tension and
compression, forming an angle of 45° with the horizontal. The largest
of which form angle 90° with each other.

5. When the stresses in the outer fibers are smaller than the proportional
limit f,, the beam behaves elastically, as shown in fig. b. In this case
the following pertains:

a) The NA passes thru the c.g. of the cross section.

b) The intensity of bending stress increases directly with the distance
from NA: f=M.y/I, Jnax=M.c [ I=M/S, (S=1/c)

c) The shear stress at any point is given by v=V.Q / (L.b)

d) The intensity of shear stress varies as a parabola being zero at outer
fibers and max at NA.
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RC Beam Behavior
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1% stage (fig. c): At low loads, all stresses are of small magnitude and are
proportional to strains.
2" stage (fig. €): When the load is increased, the tensile strength of
concrete is reached; tension cracks develop; concrete does not transmit
any tensile stresses. The steel resists the entire tension. If concrete
compressive stresses do not exceed = 0.5 f°., stresses and strains continue
to be proportional (linear stress distribution)
3" stage (fig. f): When the load is further increased, stresses and strains
are no longer proportional; the distribution of concrete stresses on the
compression side is of the same shape as concrete stress-strain curve.
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Failure can be caused in one of two ways:

A) When moderate amounts of reinforcement are employed, the steel
will reach its yield point; the reinforcements stretches a large amount;
the tension cracks widen and propagate upward; significant deflection
of the beam;

When this happens, the strains in compression zone of concrete
increase to ensue crushing (secondary compression failure) at a load
only slightly greater than that which cause the steel to yield.

Such yield failure is gradual and is preceded by visible signs of
distress: cracks and deflection.

B) When large amounts of reinforcement are employed, the
compressive strength of concrete is exhausted before the steel starts
yielding. It has been observed that beams fail in compression when
the concrete strains reach values of about 0.003 to 0.004.

Such compression failure is sudden; explosive, and occurs without
warning.

It is good practice to dimension beams that they will fail by yielding
of the steel (A) rather than by crushing of concrete (B).

Analysis of Stresses and Strength in the Different Stages

a) Stresses Elastic and Section Uncracked (figure ¢)

Tensile stresses are less than the modulus of rupture f..
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At the level of reinforcement: & =& ;
S/ Es=f/E; 5
fs=(E,/E)) f.
fs=n f.

Where n =E,/ E. is known as the modular ratio.
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It means that the stress in steel (f;=n f.) is n times that of the concrete.
The analysis shall depend on the “transformed section”. In this fictitious
section, the actual area of the reinforcement is replaced with an
equivalent concrete area equal to nA,, located at the level of steel. (Figure
below)
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Example 1
A rectangular beam has the dimensions » = 250 mm, 4 = 650 mm, and d

= 600 mm and is reinforced with 3 No. 25 bars so that 4, = 1530 mm®.
The concrete cylinder strength /. is 28 MPa, and the tensile strength in
bending (modulus of rupture) £, is 3.27 MPa. The yield point of the steel
/18 420 MPa. Determine the stresses caused by a bending moment M =
61 kKN-m.

= nd, {n—114,

|
|

B.29 in?

B.29 in®

N
N\

3Na. 8 (No. 25|
Solution
E.= 4700 [, = 24870 MPa
n=E;/E.=200000 /24870 =28
Add an area (n — 1)4,=7 x 1530
=10710 mm* {5355 mm® (8.29 in®) as shown}

vy =YAy/YA=342 mm from top (check this)
I=6,481,000,000 mm"* (check this)

Compression stress at top f. = M.y~ /1
= 61,000,000 x 342 / 6,481,000,000 = 3.22 MPa
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Tension stress at bottom £, = 61,000,000 x 308 / 6,481,000,000 = 2.90
MPa

Since 2.90 MPa < f, = 3.27 MPa (given), no tensile cracks will form, and
calculation by uncracked transformed section is justified.

Steel stress f; =n M.y /1
=8 (61,000,000 x 258 / 6,481,000,000) = 19.43 MPa

It is seen that at this stage the actual stresses are quite small compared
with the available strengths of steel and concrete.

b) Stresses Elastic and Section Cracked (figure e)

When the tensile stress £, exceeds the modulus of rupture f,, cracks form.
If the compressive stress f; is less than = 0.5 f”. and the steel stress has not
reached the yield point (f; < f;) , both materials continue to behave
elastically.

This situation occurs in structures under normal service conditions and
loads. This situation with regard to strain and stress distribution is that
shown in figure e:
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The fact is that all of the concrete that is stressed in tension is assumed
cracked, and therefore effectively absent. (Figure below: cracked
transformed section)
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To determine the location of the N.A. (kd from top), the moment of the
tension area about the axis is set equal to the moment of the compression
area:

b(kd)2/2 —nAyd-kd)=0 ... (1)
Then determine the moment of inertia.

Alternatively,

C= ‘% bki and T =Af, (3.6)

The requirement that these two forces be equal numerically has been taken care of by
the manner in which the location of the neutral axis has been determined,
Equilibrium requires that the couple constituted by the two forces C and T be
equal numerically to the external bending moment M. Hence. taking moments about
C gives
M= Tijd = A, jd (3.7)
where jd is the internal lever arm between C and T. From Eq. (3.7), the steel stress is

M
A, jd

I (3.8)

Conversely, taking moments about T gives

M= Cjd = ’; bkdjd = %‘Aﬂm’f (3.9)
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trom which the concrete stress 1s
S 2M
) kibd*
In using Egs. (3.6) through (3.10), it is convenient to have equations by which & and §

may be found directly. to establish the neutral axis distance kd and the internal lever
arm jd. First defimng the reinforcement ratio

p=A,/bd

(3.10)

then substituting A4 =p bd into equation (1), solving for k
k=(pn)* + 2pn = pn

then jd=d - kd/3,

j=1-k/3

Values of k and j are tabulated (Nilson Table A6):

Example 2
The beam of Example 1 is subjected to a bending moment M = 122 kN-m

(rather than 61 kN-m). Calculate the relevant properties and stresses.

Solution

Check the section 1s cracked:

Tension stress at bottom £, = 122,000,000 x 308 / 6,481,000,000 = 5.8
MPa

Since 5.8 MPa > f,. = 3.27 MPa (given), tensile cracks will form, and
calculation must adapt the cracked transformed section.

Equation 1, b(kd)’/2 — nAy(d — kd) = 0, with b =250 mm, d =600 mm,
n=8,and 4, = 1530 mm? inserted, gives

kd = 198 mm (distance to N.A.)

k=198/600 =0.33,

j=1-k/3=0.89

fs =M/ A jd =122,000,000/[1530 x 0.89 x 600] = 149.3 MPa

f. = 2M / kjbd® = 2x122,000,000/[0.33x0.89x250%x600°] = 9.23 MPa
or

p=As/bd=1530/(250 x 600)=0.0102, pn=0.0102x 8§ =0.0816

k=(pn)*+ 2pn — pn =(0.0816)>+ 2(0.0816) — 0.0816 = 0.33 as before.
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Notes: (compared with Example 1; doubling M)

1.
2.
3.

4,

c)

N.A. has moved upward: changed from 342 to 198 mm.

The steel stress changed from 19.43 to 149.3 MPa (about 8 times).
The concrete compressive stress has increased from 3.22 to 9.23 MPa
(about 3 times).

The moment of inertia of cracked section (2,625,000,000 mm* check
this!) is less than that of uncracked section (6,481,000,000 mm4). This
affects the magnitude of the deflection.

Flexural Strength (figure f)

At high loads, close to failure, the distribution of stresses and strains is
that of fig. f:

£y fa

R =

£ :
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Stress and strain distributions at ultimate load are assumed as shown in
fig. below:

< z d ,GLT
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T TT—+F T= Agfe r '
A

For failure mode A, two criteria are implied

-fi=5

- The concrete crushes when the maximum strain reaches g, = 0.003.

It is necessary to know, for a given distance ¢ of N.A.,
1. The total resultant compression force C in the concrete.
2. Its vertical location, i.e., its distance from the outer compression fiber.

In rectangular beams, area in compression is bc, and C = f,,bc
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Leta=f,,/f.then C=a f’. bc
The location of C is at fic from top.

Knowing a and B will define the compressive stresses.

If a and B are known, then equilibrium requires that
C=T or af.bc=Af

Also

M=Tz=Af, (d- fc)

OrM=af. bc(d-pfc)

Setf, =f, thenc =A,f,/af.
Using 4, =p bd,thenc=pf,d/af".

Substitute, M,, is then obtained

M,=pf,bd’(d-Bpf/af.)

From extensive experimental work, the values of a and B have shown to
be as in the figure below (for f°. <28 MPa, o =0.72 and = 0.425)

MPa
10 20 30 40 50 60
0.8 I I T I I T
[}
0.6 e
- | B
:'L 0.4 T
0.2
0
0 2000 4000 6000 8000 10,000

fe psi

Now, the nominal moment equation becomes:

M, =p f, bd’(1-0.59p /)
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Balanced reinforcement ratio p,
The balanced reinforcement ratio, p, represents that amount of

reinforcement necessary for the beam to fail by crushing of the concrete

at the same load that causes the steel to yield.

Hooke’s law: f; = &E;

From strain distribution (see fig.), similar triangles give
fi=e,E(d-c)c

Setting f; = f,, and substituting ¢, for f,/E;, the value of ¢ defining the

unique position of the N.A. corresponding to simultaneous crushing of

the concrete and initiation of yielding in the steel,

c=d. gl/(e t¢)

Substituting ¢ in equation C=T or
the py, 1s obtained

Pbr~= (af,c/ﬁ))[ gu/( &y + gy)]
Example 3

10

a f’c bec = A, f; with Af; = pbdf,,

Determine the nominal moment M, at which the beam of Examples 1 and

2 will fail.
Solution
p =A;/bd=1530/(250%x600) = 0.0102 (always write p with 4 digits)
check
pr="(of /) (e, T €)] =0.0282 (a=0.72)
Since p < p;, the beam will fail in tension by yielding of the steel, its
nominal moment is
M, =p f, bd’(1-0.59 p £,/ f")
=0.0102 x 420 x 250 x 600° (1 —0.59 x 0.0102 x 420 / 28)
= 350,800,000 N-mm = 350.8 kN-m
At this M, the distance to neutral axis is

c=pfpd/of.
=0.0102 x 420 x 600/ (0.72 x 28) =127.5 mm
Summary
Ex 1:Uncracked | Ex 2:Cracked Ex 3:Ultimate
NA from top,mm | 342 198 127.5
f./ fs (MPa/MPa) | 3.22/19.43 9.23/149.3 28 /420
M , kN-m 61 122 350.8

The differences between various stages (as the load is increased) are
1. The migration of the N.A. toward the compression edge.
2. The increase in steel stress.
3. The increase in concrete compressive stress.
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Design of Tension-Reinforced Rectangular Beams

To provide sufficient strength to RC structures:

1. The nominal strength is modified by a strength reduction factor ¢,
less than unity, to obtain the design strength.

2. The required strength is found by applying load factors vy, greater
than unity, to loads actually expected (service loads).

Thus, RC members are proportioned such that M, < oM,; V, < oV,;

P,ZoP,

where subscripts # denote the nominal strengths in flexure, shear, and

axial load respectively, and # denote the factored load moment, shear and

axial load.

See page 4, chapter 1 of the lecture notes.

a. Equivalent Rectangular Stress Distribution

It was noted that the actual shape of the concrete compressive stress
distribution varies considerably. The magnitude C and location fc of the
resultant of the concrete compressive stresses are obtained from
experiments and expressed in the two parameters a and .

For simplicity, the actual stress distribution is replaced by an equivalent
one of simple rectangular outline. See next figure.

The conditions are that the magnitude of C and its location must be the
same in the equivalent rectangular as in the actual stress distribution.

A
- ¥ o)
=i [LIE L
c ..._*_ a a - -
L ? C = afich "Lﬁ l - C = yfzab
< N = L T
_______ 'FS I 'FS
_______ ——+ ﬁ:" o TTTTT—* T_.-'U.F
Actual Equivalent
(a} (B}
C=af .bc=yf.ab from which y=ac/a

Witha = f,c, thisgivesy=a/p;

The force C is located at the same distance: f5; = 2.

y=wa/f; =a/2p is seen independent of f°. and can be taken as 0.85
throughout (e.g. 0.72/(2%0.425) = 0.85):
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The force C: C=0.85f.ab

The distance a: a=p;c

=085 for f°.<28 MPa

pr=085-0.05(.—28)/7 ............... for f.> 28 MPa
0.65<p,<0.85

b. Balanced Strain Condition
From strain diagram ¢ =d. ¢,/ (¢, + &)
Equilibrium C =T ; 0.85 B, bc = pybdf,

Pr~— 0.85 ﬂl (f’c/fy)[ gu/(gu + gy)]

c. Under-reinforced Beams

To ensure that failure, if it occurs, will be by yielding of the steel, not by

crushing of the concrete, this can be done, theoretically by requiring

P <P

In actual practice, the upper limit on p should be below pj, for the

following reasons:

1. To get significant yielding before failure.

2. Material properties are never known exactly.

3. Strain-hardening of the steel may lead to concrete compression
failure.

4. Actual steel area provided will always be equal to or larger than
required.

5. Lower p increases deflection and thus provides warning prior to
failure.

d. ACI Code Provisions for Under-reinforced Beams
ACI Code defines the safe limits of maximum reinforcement by two
forms both are based on the net tensile strain &, of the reinforcement
farthest from the compression face of the concrete at depth d,
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&y = 0.003 Compression ¢
1 s
0.90
c
B 0.75-
%
0.65 1
Compression Tension
. | / controlled———__ | Transiton ___|_controlled
N ‘T‘ -
Reinforcement closest _ _
to the tension face &= 'Ef}f &= 0.005
Table 21.2.2—Strength reduction factor ¢ for moment, axial force, or combined moment and axial force
¢
Tvpe of transverse reinforcement
Net tensile stain g Classification Spirals conforming to 25.7.3 Other
§=gy Compression-controlled 0.75 (a) 0.63 (b)
_ (e,—€,) (e, —¢,)
g ition!! 0.75+015—"— 065+025—— ™

gy <& = 0.005 Transition 0.005- 8:.) (c) (U.UUS—EEI) (d)
g =0.005 Tension-controlled 0.90 (e) 0.90 ()

MFor sections classified as transition. it shall be permitted to use ¢ corresponding to compression-controlled sections.

1. The minimum tensile reinforcement strain allowed at nominal
strength:

eg=¢&.(di—c)/c
p=0.85 B,/ £)(dy | d)] &/ (e + )]
conservatively

p=0.85B,(Fe/ f)l &/ (e + ]

To ensure under-reinforced behavior, ACI Code 21.2 establishes a
minimum net tensile strain & at nominal of 0.004 for members subjected

to axial loads less that 0.10 f°. 4,, where is the gross area of the cross
section. Substituting in p equation:

p=0858,(/ fJ)l &/ (e, +0.004)]

2. Allowing strength reduction factors that depend on the tensile
strain at nominal strength. The Code defines:

a. Tension-controlled member: The one with a net tensile strain &,
> 0.005. the corresponding strength reduction factor ¢ = 0.9.
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b. Compression-controlled member: The one with a net tensile
strain & < &, = 0.002. The corresponding strength reduction
factor ¢ = 0.65. For spirally-reinforced members ¢ = 0.75

For & between 0.002 and 0.005, ¢ varies linearly, and ACI Code
allows linear interpolation of ¢ based on &, See Figure and Table
21.2.2 above

The maximum reinforcement ration for a tension-controlled beam is:
(recommended for flexural members)

Poons=0.85 1 (Fe/ £z, /(2 +0.005)]

The depth of equivalent rectangular stress block a:
Since ¢ = a / f;, it is more convenient to compute ¢/d;rather than p or net

&, see Figure. Maximum value of ¢/d,= 0.375 for & > 0.005

FIGURE 3.10 €, = 0.003 €, = 0.003 €, = 0.003
Net tensile strain and ¢ d, r
ranos
c
dy
€ = 0.005 € = 0.004 € = 0.002
€ 0003 € 0003 £ 0003
d, 0008 + 0005 37 o~ 0003 +0004 °*° G ~ 0003+ 0002 8%
(a) (b) (c)
Tension-controlled Minimum net tensile Compression-controlled
member strain for flexural member meamber

The nominal flexural strength is given by (see figure below)

M,=Af(d—-a2), a=Agf,/0.85f.b
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FIGURE 3.11 0.85 fz
Singly reinforced rectangular l'— b —"I [" E|.‘—'-'| ri—"l
beam ——— ¥
1_ a= [l
4
d L; *
A,—+0—8—o—1—un-——- f— e e e e e —
T = Agly
e
(a) (b) (c)
Example 4

Using the equivalent rectangular stress distribution, directly calculate the
nominal strength of the beam previously analyzed in Example 3. Recall b
=250 mm, d = 600 mm, A, = 1530 mm?2, f°. = 28 MPa, f, = 420 MPa.
Solution
p1=0.85(f’. =28 MPa)
Po.0os=0.85 B1(fc/ fy)[eu /(¢4 10.005)]
=0.85%0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181

Actual p = 1530 /(250x600) = 0.0102
Since p < pg.05, the member will fail by yielding of steel.
Alternatively, recall c = 127.5 mm,
c/d, = 127.5/600 = 0.213 <0.375, the member will fail by yielding of steel
a=Agf,/0.85f . b=1530x420/(0.85%28x250) = 108 mm
M, = Af,(d — a/2)=1530x420(600 — 108/2)=350.9x 10°Nmm =350.9kNm
Moment equation can be re written (as derived previously) as follows:
M, =p f,bd’(1-0.59p £,/ )

=0.0102x420x250x600” (1 — 0.59x0.0102x420/28)[ 10 °] = 350.8 kNm

This equation may be simplified further for everyday design as follows
M, = Rbd"

R=pf, (1-059pf/f) (MPa)

The values of the flexural resistance factor R are tabulated in Appendix A5
(Nilson)

In which
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In accordance with safety the safety provisions of the ACI Code, the
nominal flexural strength M, is reduced by imposing the strength reduction
factor ¢ to obtain the design strength ¢ M,

oM, =o Af,(d—as’2)

Or, alternatively, oM,=opf, bdz(l —059p1/f)
Or o M,=0¢Rbd’

Example 4 (continued): Since p<pg o5 (or c¢/d; < 0.375), then & > 0.005.
Therefore, ¢ = 0.9 and design capacity is ¢ M, = 0.9x350.9 = 315.8 kNm

e. Minimum Reinforcement Ratio

In very lightly reinforced beams, if the flexural strength < the moment
that produce cracking, the beam will fail immediately and without
warning upon formation of the first flexural crack.

To ensure against this type of failure, a lower limit can be established for
the reinforcement.

According to ACI Code 9.6, at any section where tensile reinforcement is
required by analysis, the area A, provided must not be less than

As,min = Pmin bwd

Pumin =025/ f,>1.4/f,

f. Examples of Rectangular Beams

Example 5 (Analysis problem)
A rectangular beam has width 300 mm and effective depth 440 mm. it is
reinforced with 4 No.29 (#9) bars in one row. If f,= 420 MPa and f°. =
28 MPa, what is the nominal flexural strength, and what is the maximum
moment that can be utilized in design, according to ACI Code?
Solution:
Area of 4 N0.29 bars = 4 x 645 = 2580 mm” (Table A2, Nilson)
a=Agf,/0.85f . b=2580x420/(0.85%28%300) = 151.8 mm
c=a/f;=151.8/0.85=178.5 mm
c/d,=178.5/440=0.406 (between 0.429 and 0.375)

1.e. (& between 0.004 and 0.005)
Thus, the beam 1s under-reinforced
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or, p=Ay/bd =2580 /(300 x 440) = 0.0195 which just exceeds
Po.oos=0.85 B1(fc/ fy)[eu /(€4 +0.005)]

=0.85%0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181
Since &= &,(d — ¢)/c = 0.003(440 — 178.5)/178.5 = 0.00439
Using interpolation ¢ = 0.85 (Table 21.2.2, show the interpolation in
your answer)
oM, = pAf,(d — a/2)= 0.85 x2580%420(440 — 151.8/2)

=0.85 x 394.5x10°Nmm = 335.3 kNm

Check prax = po.gos= 0.0206, and pi, = 0.25 V28 / 420 > 1.4/ 420 =
0.0033. Thus puin <p = 0.0195 < p,.. 1s satisfactory.

Example 6 (Design problem)
Find the concrete cross section and the steel area required for a simply

supported rectangular beam with a span of 4.5 m that is to carry a
computed dead load of 20 kN/m and a service live load of 31 kKN/m.
Material strengths are f°. = 28 MPa and f, = 420 MPa.

Solution:

Factored load w,=12D+ 1.6 L

=1.2%x20+1.6 x31=73.6 kN/m

M,=w,F/8=73.6x45"/8=186.3kNm

To minimize section dimensions, it 1s desirable to select the maximum

permissible reinforcement ratio:

Po.00s=0.85 B (f./ f,)leu (g, +0.005)]

= 0.85%0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181

¢ = 0.9 (&= 0.005)

M,=o M,

186.3 x 10°=10.9 x 0.0181x420 bd’ ( 1 — 0.59x0.0181x420/28)

bd’ = 32,420,000 mm”

Say b =250 mm, d = 360 mm, then

Ay, required = 0.0181 x 250 x 360 = 1630 mm”

USE 2 No.32 (1638 mm°)

Total depth of section h = d, + d,/2 + d, (stirrup) + concrete cover

=360+ 16+ 12 + 40 =428 mm

Round — up to the nearest 25 mm: A =450 mm.

Note:

1. The effective depth will be increased: d = 450 — 40— 12 — 16 = 382
mm. Improved economy may be possible by refining the steel area
based on the actual, larger d.

2. Infinite number of solutions is possible depending upon the
reinforcement ratio selected.

17
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Example 7: (Design problem: section dimensions are given, A; is required)
Find the steel area required to resist a moment M, of 150 kNm using a
concrete section having b =250 mm, d = 435 mm, and /4 = 500 mm.
f’c=28 MPa and f, = 420 MPa.

Solution:

Assume a = 100 mm

oM, = pAf(d - a/2)

A= oM, | of(d —a/2) = 150% 10°/0.9x420 (435 — 100/2) = 1031 mm®
Check a =A,/0.85 f°. b=1031x420/0.85% 28 x250 = 72.8 mm
Next assume @ = 70 mm and recalculate A;:

Ay =150%10°/0.9x420 (435 — 70/2) = 992 mm”

No further iteration is required. USE A, = 992 mm’ (2 No.25 bars A, =
1080 mnt’)

Checkp =0.0091 < 0.005 then 0= 0.9 OK

Example 8: (section dimensions are given, Ay is required with variable ¢)
Architectural considerations limit the height of a 6 m long simple span
beam to 400 mm and the width to 300 mm. the following loads and
material properties are given: w; = 11 KN/m, w;= 24 kN/m, f’. = 35
MPa, and f,= 420 MPa. Determine the reinforcement of the beam.
Solution:

Factored load wy,=1.2x 11+ 1.6 x 24 =51.6 kN/m

M, =w, "/ 8=>51.6x6/8=232.2kNm

Assume a =100 and ¢ = 0.9

d =400 — 65 = 335 mm (assuming 65 mm concrete cover from centroid of bars)
A=M, | of(d—a/2) =232.2 % 10°/[0.9x420(335 — 50)] = 2156 mm®
Try 2 No.32 bars and 1 No. 29 bar, 4, provided = 2283 mm?

Check a =Ayf,/0.85 f’. b =2283%420/ 0.85% 35 x300 = 107.4 mm
107.4 mm > 100 mm assumed; continue

M, =Af(d—as2)=2283x420 (335 -107.4/2) 10°=269.7 kNm
M,=¢ M,=0.9 x269.7=242.7 kNm (adequate: > 232.2 applied)

To validate the selection of ¢ = 0.9, the net & must be checked:
c=a/f;=107.4/0.80=134.3 mm.

c/d=134.3/335=0.401 > 0.375 so & > 0.005 1s not satisfied.
&=0.003 (335-134.3)/ 134.3 = 0.00448

From (g — @)Table 21.2.2.; ¢ = 0.857

M,=¢ M, =231 kNm (not good: < 232.2)
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Try increasing the reinforcement to 3 No.32 bars; A, provided = 2457 mm’.

Repeating the calculations:
a=Agf,/0.85f.b=2457%x420/0.85x 35 x300 = 115.6 mm
c=a/f;=115.6/0.80 =144.5 mm

M, = Af(d — a/2) = 2457x420 (335 - 115.6/2) 10° = 286.1 kNm
&=0.003 (335 —144.5)/ 144.5 = 0.00400

@ =0.65 + 0.25 (0.00400 — 0.002) /(0.003) = 0.817

M,=¢ M,=0.817 x 286.1 =233.7 kNm (adequate > 232.2)

g. Over-reinforced Beams

Occasionally, it may be necessary to calculate the flexural strength of an
over-reinforced compression controlled member for which f; < f; at
flexural failure.

In this case, & < &,; in terms of ¢, and ¢:

&g=¢,d-c)lc

Equilibrium; 0.85 §; f’. bc = &, E; bd

Substituting and defining &, = ¢/d:

k) +mpk,—mp=0

where p = A, /bd and m=FE;¢g,/(0.85 ;1)

Solving for k,:
ky =L mp +(mp/2)""* ~ mpl2

Then: ¢ = k,d, a = f;c and & is known from equation of equilibrium:

fs =& E;
o M, = pAf;(d—a’2) 0 =10.65

h. Design Aids

In practice, the design of beams and other RC members is greatly
facilitated by the use of design aids.

Tables A.1, A.2, A.4 through A.7, and Graph A.1 relate directly to this
chapter.

For design purposes, there are two possible approaches:
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1’ Approach: Start with selecting the optimum p and then calculating

concrete dimensions, as follows:

1. Set M, = pRbd"

2. Table A.4: Select an appropriate p between p,q.c and p,;, . Often a

ratio of about (0.6 p,..) Will be an economical and practical choice.

If p < po.gosthen ¢ = 0.9

If po.oos < p < pmax then an iterative solution is necessary.

Table A.5: Find the flexural resistance factor R. Then bd” = M,/ pR

4. Choose b and d to meet that requirement. Often d = 2 to 3 times b is
appropriate.

5. Calculate A; = p bd, then use Table A.2 to choose the size and no. of
bars.

6. Refer to Table A.7 to ensure that the selected beam width will
provide room for the bars chosen, with adequate concrete cover and
spacing.

W

2" Approach: Start with selecting concrete dimensions, after which the

required reinforcement is found, as follows:

1. Select b and d, then calculate R = M, / pbd’

2. Use Table A.5 to find p <puax

3. Calculate A; = p bd then use Table A.2 to choose the size and no. of
bars.

4. Refer to Table A.7 to ensure that the selected beam width will
provide room for the bars chosen, with adequate concrete cover and
spacing.

Example 9: USE DESIGN AIDS

A rectangular beam has width 300 mm and effective depth 440 mm. it is
reinforced with 4 No.29 (#9) bars in one row. If f,= 420 MPa and f°. =
28 MPa, what is the nominal flexural strength, and what is the maximum
moment that can be utilized in design, according to ACI Code?
Solution:

From Table A.2, 4 No.29 bars provide A, = 2580 mm®
p=As/bd=0.0195

Table A.4: this p 1s below pua (0.0206) and above p,,i, (0.0033)

Table A.5b: R =6.79 MPa

M, = oM, =0.857 Rbd* = 335 kNm
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Example 10: USE DESIGN AIDS

Find the concrete cross section and the steel area required for a simply
supported rectangular beam. M, = 186.3 kNm. Material strengths are f°. =
28 MPa and f, = 420 MPa.

Solution:

Table A.4, puax = 0.0206. For economy p = 0.6(0.0206) = 0.0124.
Table A.5a, by interpolation R = 4.63 MPa. Then

bd* =M,/ pR =44.71 x 10° mm’

b =250 mm and d = 422.9 mm will satisfy this, but the depth will be
rounded to 435 mm, to provide a total depth of 500 mm. It follows that
R =M,/ pbd’=4.83 MPa

Table A.5a, by interpolation, p = 0.0116

Ay, =0.0112 (250)(435) = 1262 mm®

Example 11: USE DESIGN AIDS

Find the steel area required to resist a moment M, of 150 kNm using a
concrete section having b =250 mm, d = 435 mm, and /4 = 500 mm.
f’c=28 MPa and f, = 420 MPa.

Solution:

R =M,/ pbd’=3.52 MPa

Table A.5a, p =0.0091 giving A, = 0.0091(250)(435) = 990 mm”

USE 2 No.25 bars.

Practical Considerations in the Design of Beams

a. Concrete Protection for Reinforcement

To provide the steel with adequate concrete protection against fire and
corrosion, the designer must maintain a certain minimum thickness of
concrete cover outside of the outermost steel. The thickness required will
vary, depending upon the type of member and conditions of exposure.
The requirements of concrete cover in beams and slabs are shown in
figure below:
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1%" min. -]
h — N
3 L MNo. 3 (Mo. 10) stirrups
= —
| -b"'/r
1 o
1=z min.
z ™ 4 Bars | 4
n 9 Nos. 4 to 10 1
. (Nos. 10 to 32) e — n (=]
2_ r o 1
S| r T2 min
15 min.
T Bars
q» MNo. 3 or No. 4
— 23 {No. 10 or No. 13)
(&) Beam with stirrups (b) Slab

% 1n=20mm, 1 in=25 mm, 1% in =40 mm, 2% in = 65 mm

b. Selection of Bars and Bar Spacing

It is often desirable to mix bar sizes to meet steel area requirements more
closely. In general, mixed bars should be of comparable diameter, and
generally should be arranged symmetrically about the vertical centerline.
ACI Code 25.6 specifies that the minimum clear distance between
adjacent bars shall not be less than the nominal diameter of the bars or 25
mm. (for columns 1% bar diameter or 40mm).

Where beam reinforcement is placed in two or more layers, the clear
distance between layers must not be less than 25 mm, and the bars in the
upper layer should be placed directly above those in the bottom layer.
The maximum number of bars that can be placed in a beam of given
width is limited by bar diameter, by concrete cover, and by the maximum
size of aggregate specified. See Table A.7, and Fig. below.

Min. spacing

the largest of:
Smin =dt:- + 25 mm B

g

4/3 max. agg. size

40 mm

}+—50 mm
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Rectangular Beams with Tension and Compression

Reinforcement

If a beam cross section is limited because of architectural or other
considerations, it may happen that the concrete cannot develop the
compression force required to resist the given bending moment. In this
case, reinforcement is added in the compression zone, resulting in a
doubly reinforced beam, i.e., with compression as well as tension
reinforcement (see Fig.):

0.85 f. 0.85 f;
fF—b—r F—
Af, Ayf, F
A.— —e— r— —— — a
1 ]
d-d
A~ @ —@—o+- —_— —J——- —_——
Ad, Al (A~ ALty
(a) (b) {c) (d) (e)

a. Tension and Compression Steel Both at Yield Stress
In a doubly reinforced beam:;

If p <p,, disregard the compression bars.

If p > pp, the total resisting moment is the sum of two parts:

The 1 part: M,; = A’ f, (d — d°)

The 2" part: M, = (4,— A’) £, (d — a/2)

a=(A;—A)f,/0.85f.b

p=As/bd and p’=A’;/ bd
a=p—-p)f,d/0.85f.

The total nominal moment:
M,=M,;+ M, =A°f,(d-d’) + (A, —A’) f, (d — al2)

The balanced reinforcement ratio for a doubly reinforced beam is p7p :

Po=Pstp
The maximum reinforcement ratio
P max = PmaxtT P’

The maximum reinforcement ratio for ¢ = 0.9
P 0.005 = Po.oost P’
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b. Compression Steel below Yield Stress
In many cases, the compression bars will below the yield stress at failure

(s <.

From geometry of the strain diagram, fig. b:

c=d’| &,/ (&, — &)l

Sum of forces in fig. ¢ gives P, ¢ the minimum ratio that will ensure
yielding of compression steel,

p_cy =0.85 ﬂl (f’c/./:v)(d, /d)[ gu/(gu - gy)] +p’

From figures b and c:

P =pst P’ (fs!f)
where ’
f,s=Es3s=Es [gu_ (d, /d) (gu +gy)] < .ﬁ/

To determine P4y , €= 0.004 is substituted for &, giving
fs=Ese=Ele,—(d’/d) (g, +0.004)] < f,

Likewise for &= 0.005
f,s=Es €y =Es [gu_ (d, /d) (gu + 0'005)] < f_;/'
Hence, the max reinforcement ratio is

P max = Pmaxt P’ (Fs 1 1)

and for ¢ = 0.9 is
P 0.005= Po.oost P’ (s 1 1)

if the tensile reinforcement ratio is less than p~, and less than p,,, then
the tensile steel is at the yield stress at failure but the compression steel is
not, and new equations must be developed:
From strain diagram:

fs=e,E(c—-d’)/c

From Equilibrium:
Af, =085, bc+ A’ e, E(c—d’)/c

Solve for ¢, and knowing a = f; ¢

M,=085f.ab(d—-a2) + A’ fs(d—-d’)
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Example 12: (Analysis problem, with f°s = f,)
A rectangular beam has a width of 300 mm and an effective depth to the
centroid of the tension reinforcement of 600 mm. The tension
reinforcement consists of six N0.32 (#10) bars in two rows. Compression
reinforcement consisting of two No.25 (#8) bars is placed 65 mm from
the compression face of the beam. If f°. =35 MPa and f, = 420 MPa,
what is the design moment capacity of the beam?
Solution:
A,=4914 mm®, p=4914/(300x600) = 0.0273
A’s=1020 mm>, p’ = 1020/ (300x600) = 0.0057
Check the beam first as a singly reinforced beam to see if the
compression bars can be disregarded:

Pmax=0.85 B (f°/ f)l &u/ (€ +0.004)] = 0.0243 (or use Table A.4)

Actual p= 0.0273 > p,uax , S0 the beam must be analyzed as a doubly

reinforced.

P =0858,(f/ f)d/d) &,/ (ex— &) +p’
=0.85%0.8%(35/420)*(65/600)x[0.003/(0.003 — 0.0021)] + 0.0057
=0.0262

Actual p=0.0273 > p7, , so the compression bars will yield when the
beam fails.
P max = PmaxT p’ =0.0243 + 0.0057 = 0.0300
Actual p= 0.0273 < pTpax, as required. Then
a=(A;—A)f,/0.85f. b

= (4914 —1020) 420 /(0.85%35%x300) = 183.2 mm
c=a/p;=183.2/0.80 =229 mm
&=&,(d—c)lc=0.003 (600 —229)/229 = 0.0049 thus ¢ = 0.89
M,=M,,;+M,, =A°f,(d—d’)+ (A,—A’) f, (d — al2)
= [1020x420(600 — 65) + 3894x420 (600 — 183.2/2)] x107° = 1061 kNm
Design strength is
o M,=0.89 x 1061 = 954 kNm

Example 13: (Design problem, with f°s < f,)

A rectangular beam that must carry a service live load of 36 KN/m and a
calculated dead load of 15.3 kN/m on an 5.5 m simple span is limited in
cross section for architectural reasons to 250 mm (10 in) width and 500
mm (20 in) total depth. If If . =28 MPa and f, = 420 MPa, what steel
area(s) must be provided?

Solution:

Factored load, w, = 1.2 x 15.3 + 1.6 X 36 = 75.96 kN/m
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M, =75.96 (5.5)°/8 = 287.2 kNm

Assume tension steel centroid is 100mm above the bottom face and

assume compression steel, if required, will be placed 65mm below the top
surface. Then d = 400mm, d’ = 65mm

Check if the section is singly reinforced:
Table A.4: pg.gos= 0.0181 for ¢ =0.9
Ay=250x400%0.0181 = 1810 mm”
a=1810x420/0.85%x28%x250 = 127.8 mm
c=a/f;=127.8/0.85=150.3 mm
M, =Af,(d - a/2) = 1810x420(400 — 127.8/2)10 ° =255.5 kNm
(Alternatively, Table A.5b, R = 6.39, M,, = Rbd’ = 255.5 kNm)
o M, =230 kNm < 287.2 kNm, therefore compression steel is needed as
well as additional tension steel.

The remaining moment to be carried by compression steel couple:
M;=2872-230=57.2 kNm

Since p < p~, then compression steel stress f7s <f,

From strain diagram

&’s=0.003 (150.3 - 65)/150.3 =0.00170

fs=¢&sE;=0.00170 x 200000 = 340 MPa

A’y=57.2 x 10°/[340 (400 — 65)] = 502 mm®

Total area of tensile reinforcement at 420 MPa:

A= 1810 + 502(340/420) = 2217 mm’

USE 2 No.19 bars (568 mm?®) as compression reinforcement and 4 No.29
bars (2580 mm?®) as tension reinforcement. To place tension reinforcement,
2 rows of 2 bars each are used. See figure.

P—10— |
T —_— L
I
]
| |
S S
Lo
f
—t
60mm 70mm

2% 1in =65 mm, 14% in =370 mm, 10 in = 250 mm, 20 in = 500mm.


ITEK
Sticky Note
divide by phi = 0.9
As' = 502/0.9 = 558 mm2

ITEK
Sticky Note
correct 502 to 558 then 
As = 2262 mm2
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T Beams

RC floors, roofs, decks, etc., are almost always monolithic. Beam stirrups
and bent bars extend up into the slab. It is evident, therefore, that a part of
the slab will act with the upper part of the beam to resist longitudinal
compression.

The resulting section is T-shaped rather than rectangular.

The slab forms the beam flange, while the part of the beam projecting below
the slab is called the web or stem.

a. Effective Flange Width

ﬁzg;ﬁ J; | ;égg%f I....__J
e+ b by, +

(a) (b}

The effective flange width, b, has been found to depend on the beam
span 1, the thickness of the slab hy, and the clear distance to the next
beam 1.

ACI Code 6.3 requires that:

1. For symmetric T beams:
b<l/4

(b—-b,)2<8hy
(b-b,)2<1.72

2. For beams having a slab on one side only:
b-b,)<1/12
(b-b,)<6hs
(b-b,)<I.12

3. For 1solated beams:
hy>b,/2
b<45b,
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b. Structural Analysis

The neutral axis NA of a T beam may be either in the flange or in the web,
depending upon the proportions of the cross section, the amount of tensile
steel, and the strengths of the materials.

If the depth of NA < Ay, the beam can be analyzed as if it were a rectangular
beam of width b. (fig. a). This is because areas (1) and (2) are entirely in
tension zone and thus disregarded in flexural calculations.

hy i

! b . T b -
(LLLLLLLLL - Vo | _ Y ///// 2
d T_I I xS d T_—|—| -— ———|—| Neutral
| () 2 P (1) (£} | axis
= e ___ ] === eoe| |
kb, b,

(a) (b)

When the NA is in the web (fig. b), method is developed to account for the
actual T-shaped compressive zone.

, hy % 0.85 £
- - — -
WWML“ 3 TJa-be

q o F _ _ -

: .
Ag .- - b - - - - —
‘ Af,
- el -
(a) (b) (e)

It is convenient to divide the total tensile steel into two parts. The first part,
Ay, represents the steel area required to balance the compressive force in the
overhanging portions.

Ay =0.85f(b - b,)hs! f,

Mn] =Asfﬁ,(d_ hf/Z)

The remaining steel area, (45 — Ayy), 1s balanced by the compression in the
rectangular portion of the beam. In this zone:

a=(A;— Ay £,/ (0.85 . b,)

MnZ = (As - Asf)f)‘/(d —a /2)

The total nominal resisting moment is the sum of the parts:

M,=M,;+ M,,= Ay f(d—he/2) + (A, — Agp) f,(d — a [2)
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From strain diagram:
C/dt S Eu /(8u + gt)

Setting &, = 0.003 and &= 0.004 provides a max c/d, = 0.429
The condition of tensile steel yield to occur prior to concrete crushing is
satisfied if

pw,max = Pmax + pf
where
pw=Ayl b,d and pr=Assl bd

The minimum reinforcement is based on b,,:

Pmin =025/ f,>1.4/f,
As,min = Pmin bwd

c. Examples of T Beams

Example 14: (Analysis problem)

An isolated T beam is composed of a flange 700 mm wide and 150 mm
deep cast monolithically with a web of 250 mm width that extends 600
mm below the bottom surface of the flange to produce a beam of 750
mm total depth. Tensile reinforcement consists of 6 No.32 (#10) bars
placed in two horizontal rows. The centroid of the bar group is 650 mm
from the top of the beam. If f°.= 21 MPa and f, = 420 MPa, what is the
design moment capacity of the beam?

Solution:

Check flange dimensions, ks> b,,/2 : 150 > 250/2, 150 > 125
b<4b,:700<4x250,700 <1000 OK

Area of 6N0.32 = 4914 mm’

Check NA location:

a= A f,/(0.85 f°.b)= 4914x420/0.85%21x700 = 165.2 mm > hy= 150mm
so T beam analysis is required.

Ay =0.85 (b — b,)he! f, = 0.85%21(700 — 250)x150 /420 = 2869 mm’
M, = Ay f(d — hy/2) = 2860x420 (650 — 150/2)x10 ° = 692.8 kNm

a=(A,— Ay f, (0.85 f. b,) = 2045x420/(0.85x21x250) = 192.5 mm
M, =(A, — Ag) f,(d — a 12)=2045x420 (650 — 192.5/2)x10 °*=475.6 kNm
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c=a/B;=192.5/0.85=226.5 mm

d,= 685 mm to the lowest bar,
c/d;,=226.5/685=0.331<0.375, so the &> 0.005 and ¢ = 0.9
oM, =0.9 (692.9 + 475.6) = 1052 kNm

Example 15: (Design problem)
A floor system consists of a 75 mm concrete slab supported by continuous T
beams with a 7.5 m span, 1.2 m on centers. Web dimensions are b,, = 275
mm and d = 500 mm. What tensile steel area is required at midspan to resist
a factored moment of 725 kNm if f, = 420 MPa and f°. = 21 MPa?
Solution:
Determine effective flange width:
b=16 hs+ b, = 16x75+275=1475mm=1.475m
b=1/4=75/4=1875m
b=1.2m(c./c. spacing)
The controllingb =12 m

Assume a = hy="75 mm

d—a/2=500-75/2=462.5 mm

Trial:

As=M,/ o f,(d—al2)= 725%10° /[0.9%420x462.5] = 4147 mm’

Check a = A, £,/(0.85 f°.b)= 4147x420/[0.85%21x1200] = 81.3 mm > A,
T beam design is required and ¢ = 0.9 is assumed.

Ay =0.85 f.(b - b,)hs! f, = 0.85x21(1200 — 250)x75 /420 = 2948 mm’
oM, =p Ay f,(d — hy/2) = 0.9[2948x420 (500 — 75/2)x10 ° = 515.4 kNm
oM, = M,— pM,;= 725 — 515.4 = 209.6 kNm

Assume a = 100 mm
As—Ay= oM,/ ¢ f, (d — a/2)=209.6 X106 /0.9x420%(500 — 50) = 1232 mm’
Check a = (4;,— Ay £,/(0.85 f°.b,,)= 1232x420/[0.85x21%275] = 105.4 mm
This 1s close to 100 mm assumed. OK
A=Ayt A;— Ay = 2948 + 1232 = 4181 mm’
Check

c=a/f;=1054/0.85=124 mm

c/d;=124/500=0.248 <0.375, so the &> 0.005 and ¢ = 0.9

Design is satisfactory.





