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2 Flexural Analysis and Design of RC Beams 
 
Fundamental assumptions 

1. A cross section that was plane before loading remains plane under 
load. 

2. The bending stress f at any point depends on the strain at that point in 
a manner given by the stress-strain diagram of the material. (See Fig.)  

 
3. Distribution of shear stresses over the depth of the section depends on 

the shape of the cross section and the stress-strain diagram. 
4. At any point in the beam there are inclined stresses of tension and 

compression, forming an angle of 45° with the horizontal. The largest 
of which form angle 90° with each other.  

5. When the stresses in the outer fibers are smaller than the proportional 
limit fp, the beam behaves elastically, as shown in fig. b. In this case 
the following pertains: 

a) The NA passes thru the c.g. of the cross section. 
b) The intensity of bending stress increases directly with the distance 

from NA:    f = M.y / I,        fmax = M.c  / I = M / S, (S = I / c) 
c) The shear stress at any point is given by v = V.Q / (I.b) 
d) The intensity of shear stress varies as a parabola being zero at outer 

fibers and max at NA. 
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RC Beam Behavior 

 
1st stage (fig. c): At low loads, all stresses are of small magnitude and are 
proportional to strains. 
2nd stage (fig. e): When the load is increased, the tensile strength of 
concrete is reached; tension cracks develop; concrete does not transmit 
any tensile stresses. The steel resists the entire tension. If concrete 
compressive stresses do not exceed ≈ 0.5 f’c, stresses and strains continue 
to be proportional (linear stress distribution) 
3rd stage (fig. f):  When the load is further increased, stresses and strains 
are no longer proportional; the distribution of concrete stresses on the 
compression side is of the same shape as concrete stress-strain curve. 
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Failure can be caused in one of two ways: 
A) When moderate amounts of reinforcement are employed, the steel 

will reach its yield point; the reinforcements stretches a large amount; 
the tension cracks widen and propagate upward; significant deflection 
of the beam;  
When this happens, the strains in compression zone of concrete 
increase to ensue crushing (secondary compression failure) at a load 
only slightly greater than that which cause the steel to yield. 
Such yield failure is gradual and is preceded by visible signs of 
distress: cracks and deflection. 

 
B) When large amounts of reinforcement are employed, the 

compressive strength of concrete is exhausted before the steel starts 
yielding. It has been observed that beams fail in compression when 
the concrete strains reach values of about 0.003 to 0.004. 
Such compression failure is sudden; explosive, and occurs without 
warning. 
 
It is good practice to dimension beams that they will fail by yielding 
of the steel (A) rather than by crushing of concrete (B). 
 

Analysis of Stresses and Strength in the Different Stages 
 

a) Stresses Elastic and Section Uncracked (figure c) 
Tensile stresses are less than the modulus of rupture fr.                                                   

   
    
At the level of reinforcement:              εs = εc  ;          
                                                        fs / Es = fc / Ec  ; 
                                                        fs = (Es / Ec)  fc  

                                                          fs = n  fc    

            

Where n = Es / Ec  is known as the modular ratio.                                                       
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It means that the stress in steel (fs = n  fc)   is n times that of the concrete. 
The analysis shall depend on the “transformed section”. In this fictitious 
section, the actual area of the reinforcement is replaced with an 
equivalent concrete area equal to nAs, located at the level of steel. (Figure 
below) 

 
 
Example 1 
A rectangular beam has the dimensions b = 250 mm, h = 650 mm, and d 
= 600 mm and is reinforced with 3 No. 25 bars so that As = 1530 mm2. 
The concrete cylinder strength f’c is 28 MPa, and the tensile strength in 
bending (modulus of rupture) fr is 3.27 MPa. The yield point of the steel 
fy is 420 MPa. Determine the stresses caused by a bending moment M = 
61 kN-m. 

                                                                   
Solution 
Ec = 4700 √ f’c = 24870 MPa 
n = Es / Ec = 200000 / 24870 = 8 
Add an area (n – 1)As = 7 × 1530  
                                    = 10710 mm2 {5355 mm2 (8.29 in2) as shown} 
 
y‾ = ∑A.y / ∑A = 342 mm from top (check this) 
I = 6,481,000,000 mm4 (check this) 
 
Compression stress at top fc = M.y‾ / I  
                                        = 61,000,000 × 342 / 6,481,000,000 = 3.22 MPa 
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Tension stress at bottom fct = 61,000,000 × 308 / 6,481,000,000 = 2.90 
MPa 
 
Since 2.90 MPa < fr = 3.27 MPa (given), no tensile cracks will form, and 
calculation by uncracked transformed section is justified.  
 
Steel stress fs = n M.y / I  
                       = 8 (61,000,000 × 258 / 6,481,000,000) = 19.43 MPa 
 
It is seen that at this stage the actual stresses are quite small compared 
with the available strengths of steel and concrete. 

 
 
b) Stresses Elastic and Section Cracked (figure e) 
 
When the tensile stress fct exceeds the modulus of rupture fr , cracks form. 
If the compressive stress fc is less than ≈ 0.5 f’c and the steel stress has not 
reached the yield point (fs < fy) , both materials continue to behave 
elastically. 
This situation occurs in structures under normal service conditions and 
loads. This situation with regard to strain and stress distribution is that 
shown in figure e: 
 

                                        
 
The fact is that all of the concrete that is stressed in tension is assumed 
cracked, and therefore effectively absent. (Figure below: cracked 
transformed section) 
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To determine the location of the N.A. (kd from top), the moment of the 
tension area about the axis is set equal to the moment of the compression 
area: 
                   b(kd)2/2 – nAs(d – kd) = 0             …….(1) 
 
Then determine the moment of inertia. 
 
Alternatively,  
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   ρ = As / bd 

                                                   
then substituting    As = ρ bd  into equation (1), solving for k 
        ----------------------- 
k = √(ρn)2 + 2ρn − ρn 
 
then     jd = d – kd/3,    
 
j = 1 – k/3 
 
Values of k and j are tabulated (Nilson Table A6): 
 
Example 2 
The beam of Example 1 is subjected to a bending moment M = 122 kN-m 
(rather than 61 kN-m). Calculate the relevant properties and stresses. 
 
Solution 
Check the section is cracked: 
Tension stress at bottom fct = 122,000,000 × 308 / 6,481,000,000 = 5.8 
MPa 
 
Since 5.8 MPa > fr = 3.27 MPa (given), tensile cracks will form, and 
calculation must adapt the cracked transformed section.  
Equation 1, b(kd)2/2 – nAs(d – kd) = 0, with b = 250 mm,  d = 600 mm,   
n = 8, and As = 1530 mm2 inserted, gives 
kd = 198 mm (distance to N.A.) 
k = 198/600 = 0.33,              
j = 1 – k/3 = 0.89 
fs = M / As jd = 122,000,000/[1530 × 0.89 × 600] = 149.3 MPa 
fc = 2M / kjbd2 = 2×122,000,000/[0.33×0.89×250×6002] = 9.23 MPa 
or 
ρ = As / bd = 1530 / (250 × 600) = 0.0102,  ρn = 0.0102× 8 = 0.0816 
        -----------------------                   
k = √(ρn)2 + 2ρn − ρn = √(0.0816)2 + 2(0.0816) − 0.0816 = 0.33 as before. 
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Notes: (compared with Example 1; doubling M) 
1. N.A. has moved upward: changed from 342 to 198 mm. 
2. The steel stress changed from 19.43 to 149.3 MPa (about 8 times). 
3. The concrete compressive stress has increased from 3.22 to 9.23 MPa 

(about 3 times). 
4. The moment of inertia of cracked section (2,625,000,000 mm4 check 

this!) is less than that of uncracked section (6,481,000,000 mm4). This 
affects the magnitude of the deflection. 

 
c) Flexural Strength (figure f) 
At high loads, close to failure, the distribution of stresses and strains is 
that of fig. f:     

                                 
Stress and strain distributions at ultimate load are assumed as shown in 
fig. below: 

 
For failure mode A, two criteria are implied  
- fs = fy  
- The concrete crushes when the maximum strain reaches εu = 0.003. 
 
It is necessary to know, for a given distance c of N.A., 
1. The total resultant compression force C in the concrete. 
2. Its vertical location, i.e., its distance from the outer compression fiber. 
 
In rectangular beams, area in compression is bc, and C = favbc 
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Let α = fav / f’c then C = α f’c bc 
The location of C is at βc from top. 
 
Knowing α and β will define the compressive stresses. 
 
If α and β are known, then equilibrium requires that 
C = T    or     α f’c bc = As fs                     
Also 
M = Tz = As fs (d – βc)   
Or M = α f’c bc(d – βc)   
 
Set fs = fy then c = As fy / α f’c 
Using As = ρ bd, then c = ρ fy d / α f’c 

 
Substitute, Mn is then obtained 
 
Mn = ρ fy bd2(1 – β ρ fy/ α f’c)  
 
From extensive experimental work, the values of α and β have shown to 
be as in the figure below (for f’c  ≤ 28 MPa, α = 0.72 and β = 0.425) 
 

 
 
Now, the nominal moment equation becomes: 

 
 
 

Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c) 
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Balanced reinforcement ratio  ρb 
The balanced reinforcement ratio, ρb represents that amount of 
reinforcement necessary for the beam to fail by crushing of the concrete 
at the same load that causes the steel to yield. 
Hooke’s law:   fs = εsEs 

From strain distribution (see fig.), similar triangles give 
                               fs = εu Es(d – c)/c 
Setting fs = fy, and substituting εy for fy /Es, the value of c defining the 
unique position of the N.A. corresponding to simultaneous crushing of 
the concrete and initiation of yielding in the steel, 
                                       c = d. εu/( εu + εy) 
 
Substituting c in equation C = T    or    α f’c bc = As fs   with Asfs = ρbdfy, 
the ρb is obtained 
                                     ρb = (α f’c / fy )[ εu/( εu + εy)] 
Example 3 
Determine the nominal moment Mn at which the beam of Examples 1 and 
2 will fail. 
Solution 
ρ = As / bd = 1530 / (250×600) = 0.0102 (always write ρ with 4 digits) 
check  
ρb = (α f’c / fy )[ εu/( εu + εy)] = 0.0282        (α = 0.72) 
Since ρ < ρb , the beam will fail in tension by yielding of the steel, its 
nominal moment is 
             Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c) 
                   = 0.0102 × 420 × 250 × 6002 (1 – 0.59 × 0.0102 × 420 / 28) 
                   = 350,800,000 N-mm = 350.8 kN-m 
At this Mn, the distance to neutral axis is 
c = ρ fy d / α f’c  

   = 0.0102 × 420 × 600 / (0.72 × 28) = 127.5 mm 
Summary  

 Ex 1:Uncracked Ex 2:Cracked Ex 3:Ultimate 
NA from top,mm 342 198 127.5 
fc / fs  (MPa/MPa) 3.22 / 19.43 9.23 / 149.3 28 / 420 
M , kN-m 61 122 350.8 
The differences between various stages (as the load is increased) are 

1. The migration of the N.A. toward the compression edge. 
2. The increase in steel stress. 
3. The increase in concrete compressive stress. 
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Design of Tension-Reinforced Rectangular Beams 
To provide sufficient strength to RC structures: 
1. The nominal strength is modified by a strength reduction factor φ, 

less than unity, to obtain the design strength. 
2. The required strength is found by applying load factors γ, greater 

than unity, to loads actually expected (service loads). 
Thus, RC members are proportioned such that Mu ≤ φMn; Vu ≤ φVn;      
Pu ≤ φPn 
where subscripts n denote the nominal strengths in flexure, shear, and 
axial load respectively, and u denote the factored load moment, shear and 
axial load. 
See page 4, chapter 1 of the lecture notes. 

 
a. Equivalent Rectangular Stress Distribution 
It was noted that the actual shape of the concrete compressive stress 
distribution varies considerably. The magnitude C and location βc of the 
resultant of the concrete compressive stresses are obtained from 
experiments and expressed in the two parameters α and β. 
For simplicity, the actual stress distribution is replaced by an equivalent 
one of simple rectangular outline. See next figure. 
The conditions are that the magnitude of C and its location must be the 
same in the equivalent rectangular as in the actual stress distribution. 

 
C = α f’c bc =  γ f’c ab            from which    γ = α c / a 
With a = β1c,    this gives γ = α / β1 
The force C is located at the same distance: β1 = 2β. 
γ = α / β1 = α / 2β is seen independent of f’c and can be taken as 0.85 
throughout (e.g. 0.72/(2×0.425) = 0.85): 
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The force C:                         C = 0.85 f’c ab 

 
The distance a:                       a = β1c 

 
 β1 = 0.85                      ………………….       for  f’c ≤ 28 MPa 

 
 β1 = 0.85 – 0.05 (f’c − 28) / 7  ……………       for  f’c > 28 MPa 
 
                                             0.65 ≤ β1 ≤ 0.85    
 

 
b. Balanced Strain Condition 
From strain diagram  c = d. εu / (εu + εy) 
Equilibrium C = T ;  0.85 β1 f’c bc  = ρbbdfy 

 
 ρb = 0.85 β1 (f’c /  fy)[ εu / (εu + εy)]

 
c. Under-reinforced Beams 
To ensure that failure, if it occurs, will be by yielding of the steel, not by 
crushing of the concrete, this can be done, theoretically by requiring  
                                       ρ < ρb 
In actual practice, the upper limit on ρ should be below ρb for the 
following reasons: 
1. To get significant yielding before failure. 
2. Material properties are never known exactly. 
3. Strain-hardening of the steel may lead to concrete compression 

failure. 
4. Actual steel area provided will always be equal to or larger than 

required. 
5. Lower ρ increases deflection and thus provides warning prior to 

failure. 
 

d. ACI Code Provisions for Under-reinforced Beams 
ACI Code defines the safe limits of maximum reinforcement by two 
forms both are based on the net tensile strain εt of the reinforcement 
farthest from the compression face of the concrete at depth dt 



Prof Dr Bayan Salim                           Chapter 2:Flex Analysis & Design 13

  

 
 

1. The minimum tensile reinforcement strain allowed at nominal 
strength: 

εt = εu.( dt – c) / c 
ρ = 0.85 β1 (f’c /  fy)( dt  / d)[ εu / (εu + εt)] 
conservatively  
ρ = 0.85 β1 (f’c /  fy)[ εu / (εu + εt)] 
 
To ensure under-reinforced behavior, ACI Code 21.2 establishes a 
minimum net tensile strain εt  at nominal of 0.004 for members subjected 
to axial loads less that 0.10 f’c Ag, where is the gross area of the cross 
section. Substituting in ρ equation: 
 

 ρ = 0.85 β1 (f’c /  fy)[ εu / (εu + 0.004)] 

                         
2. Allowing strength reduction factors that depend on the tensile 

strain at nominal strength. The Code defines: 
a. Tension-controlled member: The one with a net tensile strain εt 

≥ 0.005. the corresponding strength reduction factor φ = 0.9. 
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b. Compression-controlled member: The one with a net tensile 
strain εt ≤ εty = 0.002. The corresponding strength reduction 
factor φ = 0.65. For spirally-reinforced members φ  = 0.75 

 
For εt between 0.002 and 0.005, φ varies linearly, and ACI Code 
allows linear interpolation of φ based on εt. See Figure and Table 
21.2.2 above 

 
The maximum reinforcement ration for a tension-controlled beam is: 
(recommended for flexural members) 
 

ρ0.005 = 0.85 β1 (f’c /  fy)[εu /(εu +0.005)] 
 

                  
The depth of equivalent rectangular stress block a: 
Since c = a / β1, it is more convenient to compute c/dt rather than ρ or net 
εt, see Figure. Maximum value of c/dt = 0.375 for εt ≥ 0.005 

 
 
The nominal flexural strength is given by (see figure below)   
    
Mn = Asfy(d – a/2),  a = Asfy / 0.85 f’c b
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Example 4 
Using the equivalent rectangular stress distribution, directly calculate the 
nominal strength of the beam previously analyzed in Example 3. Recall b 
= 250 mm, d = 600 mm, As = 1530 mm2, f’c = 28 MPa, fy = 420 MPa. 
Solution 
β1 = 0.85 (f’c = 28 MPa) 
ρ0.005 = 0.85 β1 (f’c /  fy)[εu /(εu +0.005)] 
         = 0.85×0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181 
Actual ρ = 1530 /(250×600) = 0.0102  
Since ρ < ρ0.005 , the member will fail by yielding of steel. 
Alternatively, recall c = 127.5 mm, 
c/dt = 127.5/600 = 0.213 <0.375, the member will fail by yielding of steel  
a = Asfy / 0.85 f’c b = 1530×420/(0.85×28×250) = 108 mm 
Mn = Asfy(d – a/2)=1530×420(600 – 108/2)=350.9×106Nmm =350.9kNm 
Moment equation can be re written (as derived previously) as follows: 

    Mn = ρ fy bd2(1 – 0.59 ρ fy/ f’c) 
      = 0.0102×420×250×6002 (1 – 0.59×0.0102×420/28)[10– 6] = 350.8 kNm 
 
This equation may be simplified further for everyday design as follows 
 
                                                Mn = Rbd2 
In which 
                                 R = ρ fy (1 – 0.59 ρ fy/ f’c)         (MPa) 
 
The values of the flexural resistance factor R are tabulated in Appendix A5 
(Nilson)    
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In accordance with safety the safety provisions of the ACI Code, the 
nominal flexural strength Mn is reduced by imposing the strength reduction 
factor φ to obtain the design strength φ Mn 

                                          φ Mn = φ Asfy(d – a/2) 
 
Or, alternatively,        φ Mn = φ ρ fy bd2(1 – 0.59 ρ fy/ f’c) 
Or                                φ Mn = φ R bd2      
 
Example 4 (continued): Since ρ<ρ0.005 (or c/dt < 0.375), then εt > 0.005. 
Therefore, φ = 0.9 and design capacity is φ Mn = 0.9×350.9 = 315.8 kNm 
 

e. Minimum Reinforcement Ratio 
In very lightly reinforced beams, if the flexural strength < the moment 
that produce cracking, the beam will fail immediately and without 
warning upon formation of the first flexural crack. 
To ensure against this type of failure, a lower limit can be established for 
the reinforcement.  
According to ACI Code 9.6, at any section where tensile reinforcement is 
required by analysis, the area As provided must not be less than 

 
       As,min = ρmin bwd 

 
 ρmin = 0.25 √f’c / fy ≥ 1.4 / fy 

 
                                                 

f. Examples of Rectangular Beams 
 
Example 5 (Analysis problem) 
A rectangular beam has width 300 mm and effective depth 440 mm. it is 
reinforced with 4 No.29 (#9) bars in one row. If fy = 420 MPa and f’c = 
28 MPa, what is the nominal flexural strength, and what is the maximum 
moment that can be utilized in design, according to ACI Code? 
Solution: 
Area of 4 No.29 bars = 4 × 645 = 2580 mm2  (Table A2, Nilson) 
a = Asfy / 0.85 f’c b = 2580×420/(0.85×28×300) = 151.8 mm 
c = a / β1 = 151.8 / 0.85 = 178.5 mm 
c / dt = 178.5 / 440 = 0.406  (between 0.429 and 0.375) 
                                    i.e. (εt between 0.004 and 0.005) 
Thus, the beam is under-reinforced 
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or, ρ = As/bd = 2580 / (300 × 440) = 0.0195 which just exceeds  
ρ0.005 = 0.85 β1 (f’c /  fy)[εu /(εu +0.005)] 
         = 0.85×0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181 
Since εt = εu(d – c)/c = 0.003(440 – 178.5)/178.5 = 0.00439 
Using interpolation φ = 0.85 (Table 21.2.2, show the interpolation in 
your answer) 
φMn = φAsfy(d – a/2)= 0.85 ×2580×420(440 – 151.8/2) 
                                  = 0.85 × 394.5×106 Nmm = 335.3 kNm 
Check ρmax = ρ0.004 = 0.0206, and ρmin = 0.25 √28 / 420 ≥ 1.4 / 420 = 
0.0033. Thus ρmin < ρ = 0.0195 < ρmax is satisfactory. 
 
Example 6 (Design problem) 
Find the concrete cross section and the steel area required for a simply 
supported rectangular beam with a span of 4.5 m that is to carry a 
computed dead load of 20 kN/m and a service live load of 31 kN/m. 
Material strengths are f’c = 28 MPa and fy = 420 MPa. 
Solution: 
Factored load wu = 1.2 D + 1.6 L 
                             = 1.2 × 20 + 1.6 × 31 = 73.6 kN/m 
Mu = wu l2 / 8 = 73.6 × 4.52 / 8 = 186.3 kNm 
To minimize section dimensions, it is desirable to select the maximum 
permissible reinforcement ratio: 
ρ0.005 = 0.85 β1 (f’c /  fy)[εu /(εu +0.005)] 
         = 0.85×0.85 (28/420)[0.003 /(0.003 + 0.005)] = 0.0181 

     φ = 0.9 (εt = 0.005) 
Mu = φ Mn 

186.3 × 106 = 0.9 × 0.0181×420 bd2 ( 1 – 0.59×0.0181×420/28) 
bd2 = 32,420,000 mm2 
Say b = 250 mm, d = 360 mm, then 
As, required = 0.0181 × 250 × 360 = 1630 mm2 
USE 2 No.32 (1638 mm2) 
Total depth of section h = dt + db/2 + db (stirrup) + concrete cover 
                                       = 360 + 16 + 12 + 40 = 428 mm 
Round – up to the nearest 25 mm:  h = 450 mm. 
Note: 
1. The effective depth will be increased: d = 450 – 40 – 12 – 16 = 382 

mm. Improved economy may be possible by refining the steel area 
based on the actual, larger d. 

2. Infinite number of solutions is possible depending upon the 
reinforcement ratio selected. 
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Example 7: (Design problem: section dimensions are given, As is required) 
Find the steel area required to resist a moment Mu of 150 kNm using a 
concrete section having b = 250 mm, d = 435 mm, and h = 500 mm. 
f’c = 28 MPa and fy = 420 MPa. 
Solution: 
Assume a = 100 mm 
φMn = φAsfy(d – a/2) 
As= φMn / φfy(d – a/2) = 150×106 / 0.9×420 (435 – 100/2) = 1031 mm2 

Check a = Asfy / 0.85 f’c b = 1031×420 / 0.85× 28 ×250 = 72.8 mm 
Next assume a = 70 mm and recalculate As: 
As = 150×106 / 0.9×420 (435 – 70/2) = 992 mm2  
No further iteration is required. USE As = 992 mm2 (2 No.25 bars As = 
1080 mm2) 
Check ρ = 0.0091 < ρ0.005 , then φ = 0.9 OK   
  
Example 8: (section dimensions are given, As is required with variable φ) 
Architectural considerations limit the height of a 6 m long simple span 
beam to 400 mm and the width to 300 mm. the following loads and 
material properties are given: wd = 11 kN/m, wl = 24 kN/m, f’c = 35 
MPa, and fy = 420 MPa. Determine the reinforcement of the beam. 
Solution: 
Factored load wu = 1.2 × 11 + 1.6 × 24 = 51.6 kN/m 
Mu = wu l2/ 8 = 51.6 × 62/ 8 = 232.2 kNm 
 
Assume a = 100 and φ = 0.9 
d = 400 – 65 = 335 mm (assuming 65 mm concrete cover from centroid of bars) 
As= Mu / φfy(d – a/2)  = 232.2 × 106/[0.9×420(335 – 50)] = 2156 mm2 
Try 2 No.32 bars and 1 No. 29 bar, As, provided = 2283 mm2 
Check a = Asfy / 0.85 f’c b = 2283×420 / 0.85× 35 ×300 = 107.4 mm         
107.4 mm > 100 mm assumed; continue 

     Mn = Asfy(d – a/2) = 2283×420 ( 335 – 107.4/2) 10-6 = 269.7 kNm 
     Mu = φ Mn = 0.9 × 269.7 = 242.7 kNm (adequate: > 232.2 applied) 
      
     To validate the selection of φ = 0.9, the net εt must be checked: 
     c = a /β1 = 107.4 / 0.80 = 134.3 mm. 
     c/d = 134.3/335 = 0.401 > 0.375 so εt  > 0.005 is not satisfied. 
     εt = 0.003 (335 – 134.3)/ 134.3 = 0.00448 
    From (εt − φ)Table 21.2.2.; φ = 0.857 
    Mu = φ Mn = 231 kNm (not good: < 232.2) 
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    Try increasing the reinforcement to 3 No.32 bars; As, provided = 2457 mm2. 
    
    Repeating the calculations:            
    a = Asfy / 0.85 f’c b = 2457×420 / 0.85× 35 ×300 = 115.6 mm          
    c = a /β1 = 115.6 / 0.80 = 144.5 mm 
    Mn = Asfy(d – a/2) = 2457×420 ( 335 – 115.6/2) 10-6 = 286.1 kNm 
    εt = 0.003 (335 – 144.5)/ 144.5 = 0.00400 
    φ = 0.65 + 0.25 (0.00400 – 0.002) /(0.003) = 0.817 
    Mu = φ Mn = 0.817 × 286.1 = 233.7 kNm (adequate > 232.2) 

 
 

g. Over-reinforced Beams 
 
Occasionally, it may be necessary to calculate the flexural strength of an 
over-reinforced compression controlled member for which fs < fy at 
flexural failure. 
In this case, εs < εy; in terms of εu and c: 
εs = εu (d – c) / c 
Equilibrium; 0.85 β1 f’c bc = εs Es bd 

     Substituting and defining ku = c/d: 
     ku

2 + m ρku – mρ = 0 
     where ρ = As /bd          and        m = Es εu / (0.85 β1 f’c) 
    
     Solving for ku: 
                                   ku =[ mρ +( mρ/2)2]1/2 – mρ/2 
 
     Then: c = kud, a = β1c and εs is known from equation of equilibrium: 
 
     fs = εs Es 
                             φ Mn = φAsfs (d – a/2)       φ = 0.65 
  
 

h. Design Aids 
In practice, the design of beams and other RC members is greatly 
facilitated by the use of design aids. 
Tables A.1, A.2, A.4 through A.7, and Graph A.1 relate directly to this 
chapter. 
For design purposes, there are two possible approaches: 
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1st Approach: Start with selecting the optimum ρ and then calculating 
concrete dimensions, as follows: 
1. Set Mu = φRbd2 
2. Table A.4: Select an appropriate ρ between ρmax and ρmin . Often a 

ratio of about (0.6 ρmax) will be an economical and practical choice. 
If ρ ≤ ρ0.005 then φ = 0.9 
If ρ0.005 < ρ < ρmax then an iterative solution is necessary. 

3. Table A.5: Find the flexural resistance factor R. Then bd2 = Mu/ φR  
4. Choose b and d to meet that requirement. Often d = 2 to 3 times b is 

appropriate. 
5. Calculate As = ρ bd , then use Table A.2 to choose the size and no. of 

bars. 
6. Refer to Table A.7 to ensure that the selected beam width will 

provide room for the bars chosen, with adequate concrete cover and 
spacing. 

 
2nd Approach: Start with selecting concrete dimensions, after which the 
required reinforcement is found, as follows: 
1. Select b and d, then calculate R = Mu / φbd2 

2. Use Table A.5 to find ρ < ρmax 
3. Calculate As = ρ bd then use Table A.2 to choose the size and no. of 

bars. 
4. Refer to Table A.7 to ensure that the selected beam width will 

provide room for the bars chosen, with adequate concrete cover and 
spacing. 

 
Example 9: USE DESIGN AIDS 
A rectangular beam has width 300 mm and effective depth 440 mm. it is 
reinforced with 4 No.29 (#9) bars in one row. If fy = 420 MPa and f’c = 
28 MPa, what is the nominal flexural strength, and what is the maximum 
moment that can be utilized in design, according to ACI Code? 
Solution: 
From Table A.2, 4 No.29 bars provide As = 2580 mm2 
ρ = As / bd = 0.0195 
Table A.4: this ρ is below ρmax (0.0206) and above ρmin (0.0033) 
Table A.5b: R = 6.79 MPa 
Mu = φMn = 0.857 Rbd2 =   335 kNm 
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Example 10: USE DESIGN AIDS 
Find the concrete cross section and the steel area required for a simply 
supported rectangular beam. Mu = 186.3 kNm. Material strengths are f’c = 
28 MPa and fy = 420 MPa. 
Solution: 
Table A.4, ρmax = 0.0206. For economy ρ = 0.6(0.0206) = 0.0124. 
Table A.5a, by interpolation R = 4.63 MPa. Then 
bd2 = Mu/ φR = 44.71 × 106 mm3 
b = 250 mm and d = 422.9 mm will satisfy this, but the depth will be 
rounded to 435 mm, to provide a total depth of 500 mm. It follows that 
R = Mu / φbd2 = 4.83 MPa 
Table A.5a, by interpolation, ρ = 0.0116 
As = 0.0112 (250)(435) = 1262  mm2 

 
Example 11: USE DESIGN AIDS 
Find the steel area required to resist a moment Mu of 150 kNm using a 
concrete section having b = 250 mm, d = 435 mm, and h = 500 mm. 
f’c = 28 MPa and fy = 420 MPa. 
Solution: 
R = Mu / φbd2 = 3.52 MPa 
Table A.5a, ρ = 0.0091 giving As = 0.0091(250)(435) = 990 mm2 
USE 2 No.25 bars. 

 
 

Practical Considerations in the Design of Beams 
 
a. Concrete Protection for Reinforcement 
To provide the steel with adequate concrete protection against fire and 
corrosion, the designer must maintain a certain minimum thickness of 
concrete cover outside of the outermost steel. The thickness required will 
vary, depending upon the type of member and conditions of exposure. 
The requirements of concrete cover in beams and slabs are shown in 
figure below: 
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¾ in = 20 mm, 1 in = 25 mm, 1½ in = 40 mm, 2½ in = 65 mm 

 
b. Selection of Bars and Bar Spacing 

 
It is often desirable to mix bar sizes to meet steel area requirements more 
closely. In general, mixed bars should be of comparable diameter, and 
generally should be arranged symmetrically about the vertical centerline. 
ACI Code 25.6 specifies that the minimum clear distance between 
adjacent bars shall not be less than the nominal diameter of the bars or 25 
mm. (for columns 1½ bar diameter or 40mm). 
Where beam reinforcement is placed in two or more layers, the clear 
distance between layers must not be less than 25 mm, and the bars in the 
upper layer should be placed directly above those in the bottom layer. 
The maximum number of bars that can be placed in a beam of given 
width is limited by bar diameter, by concrete cover, and by the maximum 
size of aggregate specified. See Table A.7, and Fig. below.  
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Rectangular Beams with Tension and Compression 
Reinforcement 
If a beam cross section is limited because of architectural or other 
considerations, it may happen that the concrete cannot develop the 
compression force required to resist the given bending moment. In this 
case, reinforcement is added in the compression zone, resulting in a 
doubly reinforced beam, i.e., with compression as well as tension 
reinforcement (see Fig.): 

 
a. Tension and Compression Steel Both at Yield Stress 
In a doubly reinforced beam; 
If  ρ ≤ ρb , disregard the compression bars. 
If ρ > ρb , the total resisting moment is the sum of two parts: 
The 1st part: Mn1 = A’s fy (d – d’) 
The 2nd part: Mn2 = (As – A’s) fy (d – a/2) 
 
a = (As − A’s)fy / 0.85 f’c b  
 
ρ = As / bd       and       ρ’= A’s / bd 
a = (ρ − ρ’) fy d / 0.85 f’c  
 
The total nominal moment: 
 
Mn = Mn1 + Mn2  = A’s fy (d – d’) + (As – A’s) fy (d – a/2) 
                                                        
The balanced reinforcement ratio for a doubly reinforced beam is ρ‾b : 
                                          ρ‾b  = ρb + ρ’ 
The maximum reinforcement ratio  
                                       ρ‾max  = ρmax + ρ’ 
The maximum reinforcement ratio for φ = 0.9 
                                       ρ‾0.005   = ρ0.005 + ρ’ 
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b. Compression Steel below Yield Stress 
In many cases, the compression bars will below the yield stress at failure 
(f’s < fy). 
From geometry of the strain diagram, fig. b: 
c = d’[ εu / (εu − εy)] 
Sum of forces in fig. c gives ρ‾cy : the minimum ratio that will ensure 
yielding of compression steel, 
 
ρ‾cy  = 0.85 β1 (f’c /  fy)(d’ / d)[ εu / (εu − εy)] + ρ’ 
  
From figures b and c: 
                                          ρ‾b  = ρb + ρ’(f’s / fy) 
where  
f’s = Es ε

’
s = Es [εu − (d’ / d) (εu + εy)] ≤  fy 

 
To determine ρmax , εt = 0.004 is substituted for εy, giving 
f’s = Es ε

’
s = Es [εu − (d’ / d) (εu + 0.004)] ≤  fy 

 
Likewise for εt = 0.005 
f’s = Es ε

’
s = Es [εu − (d’ / d) (εu + 0.005)] ≤  fy 

Hence, the max reinforcement ratio is 
ρ‾max  = ρmax + ρ’(f’s / fy) 
 
and for φ = 0.9 is  
ρ‾0.005 = ρ0.005 + ρ’(f’s / fy) 
 
if the tensile reinforcement ratio is less than ρ‾b and less than ρ‾cy , then 
the tensile steel is at the yield stress at failure but the compression steel is 
not, and new equations must be developed: 
From strain diagram: 
                                        f’s = εu Es(c – d’) / c 
 
From Equilibrium: 
                           Asfy = 0.85β1 f’c bc + A’s εu Es(c – d’) / c 
 
Solve for c, and knowing a = β1 c 
 
                    Mn = 0.85 f’c ab (d – a/2) + A’s f’s (d – d’)  
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Example 12: (Analysis problem, with f’s = fy) 
A rectangular beam has a width of 300 mm and an effective depth to the 
centroid of the tension reinforcement of 600 mm. The tension 
reinforcement consists of six No.32 (#10) bars in two rows. Compression 
reinforcement consisting of two No.25 (#8) bars is placed 65 mm from 
the compression face of the beam. If   f’c = 35 MPa and fy = 420 MPa, 
what is the design moment capacity of the beam? 
Solution: 
As = 4914 mm2,   ρ = 4914 / (300×600) = 0.0273 
A’s = 1020 mm2,  ρ’ = 1020 / (300×600) = 0.0057 
Check the beam first as a singly reinforced beam to see if the 
compression bars can be disregarded: 
ρmax = 0.85 β1 (f’c /  fy)[ εu / (εu + 0.004)] = 0.0243 (or use Table A.4) 
Actual ρ = 0.0273 > ρmax , so the beam must be analyzed as a doubly 
reinforced. 
ρ‾cy  = 0.85 β1 (f’c /  fy)(d’ / d)[ εu / (εu − εy)] + ρ’ 
       = 0.85×0.8×(35/420)×(65/600)×[0.003/(0.003 – 0.0021)] + 0.0057  
       = 0.0262 
Actual ρ = 0.0273 > ρ‾cy  , so the compression bars will yield when the 
beam fails. 

     ρ‾max  = ρmax + ρ’ = 0.0243 + 0.0057 = 0.0300 
Actual ρ = 0.0273 < ρ‾max , as required. Then 
a = (As − A’s)fy / 0.85 f’c b  
   = (4914 – 1020) 420 /(0.85×35×300) = 183.2 mm 
c = a / β1 = 183.2 / 0.80 = 229 mm 
εt = εu(d – c)/c = 0.003 (600 – 229)/229 = 0.0049 thus φ = 0.89 
Mn = Mn1 + Mn2  = A’s fy (d – d’) + (As – A’s) fy (d – a/2) 
= [1020×420(600 – 65) + 3894×420 (600 – 183.2/2)] ×10−6 = 1061 kNm 
Design strength is 
φ Mn = 0.89 × 1061 = 954 kNm 
 
Example 13: (Design problem, with f’s < fy) 
A rectangular beam that must carry a service live load of 36 kN/m and a 
calculated dead load of 15.3 kN/m on an 5.5 m simple span is limited in 
cross section for architectural reasons to 250 mm (10 in) width and 500 
mm (20 in) total depth. If If   f’c = 28 MPa and fy = 420 MPa, what steel 
area(s) must be provided? 
Solution: 
Factored load, wu = 1.2 × 15.3 + 1.6 × 36 = 75.96 kN/m 
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Mu = 75.96 (5.5)2/8 = 287.2 kNm 
 
Assume tension steel centroid is 100mm above the bottom face and 
assume compression steel, if required, will be placed 65mm below the top 
surface. Then d = 400mm, d’ = 65mm 
 
Check if the section is singly reinforced: 
Table A.4: ρ0.005 = 0.0181 for φ = 0.9 
As = 250×400×0.0181 = 1810 mm2 
a = 1810×420 / 0.85×28×250 = 127.8 mm 
c = a / β1 = 127.8 / 0.85 = 150.3 mm 
Mn = Asfs (d – a/2) = 1810×420(400 – 127.8/2)10– 6 = 255.5 kNm    
(Alternatively, Table A.5b, R = 6.39,  Mn = Rbd2 = 255.5 kNm) 

φ Mn = 230 kNm < 287.2 kNm, therefore compression steel is needed as   
well as additional tension steel. 
 
The remaining moment to be carried by compression steel couple: 
M1 = 287.2 – 230 = 57.2 kNm 
Since ρ < ρ‾cy then compression steel stress f’s < fy 
From strain diagram 
ε’s = 0.003 (150.3 – 65)/150.3 = 0.00170 
f’s = ε’s Es = 0.00170 × 200000 = 340 MPa 
A’s = 57.2 × 106 / [340 (400 – 65)] = 502 mm2 

Total area of tensile reinforcement at 420 MPa: 
As = 1810 + 502(340/420) = 2217 mm2 

USE 2 No.19 bars (568 mm2) as compression reinforcement and 4 No.29 
bars (2580 mm2) as tension reinforcement. To place tension reinforcement, 
2 rows of 2 bars each are used. See figure. 

                                                 
                                                            60mm        70mm                                                            
2½ in = 65 mm, 14¾ in = 370 mm, 10 in = 250 mm, 20 in = 500mm. 

ITEK
Sticky Note
divide by phi = 0.9
As' = 502/0.9 = 558 mm2

ITEK
Sticky Note
correct 502 to 558 then 
As = 2262 mm2
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T Beams 
RC floors, roofs, decks, etc., are almost always monolithic. Beam stirrups 
and bent bars extend up into the slab. It is evident, therefore, that a part of 
the slab will act with the upper part of the beam to resist longitudinal 
compression. 
The resulting section is T-shaped rather than rectangular. 
The slab forms the beam flange, while the part of the beam projecting below 
the slab is called the web or stem. 

 
a. Effective Flange Width 
 

 
 
The effective flange width, b, has been found to depend on the beam 
span l, the thickness of the slab hf, and the clear distance to the next 
beam lc. 
 
ACI Code 6.3 requires that: 
 
1. For symmetric T beams: 
b ≤ l /4 
(b – bw)/2 ≤ 8 hf 
(b – bw)/2 ≤ lc /2 
 
2. For beams having a slab on one side only: 
(b – bw) ≤ l /12 
(b – bw) ≤ 6 hf 
(b – bw) ≤ lc /2 
 
3. For isolated beams: 
hf ≥ bw/2 
b ≤ 4 bw 
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b. Structural Analysis 
The neutral axis NA of a T beam may be either in the flange or in the web, 
depending upon the proportions of the cross section, the amount of tensile 
steel, and the strengths of the materials. 
If the depth of NA ≤ hf, the beam can be analyzed as if it were a rectangular 
beam of width b. (fig. a). This is because areas (1) and (2) are entirely in 
tension zone and thus disregarded in flexural calculations. 

 
 
When the NA is in the web (fig. b), method is developed to account for the 
actual T-shaped compressive zone. 

            
It is convenient to divide the total tensile steel into two parts. The first part, 
Asf , represents the steel area required to balance the compressive force in the 
overhanging portions. 
                                        Asf  = 0.85 f’c(b – bw)hf / fy 

                                         Mn1 = Asf  fy(d − hf /2) 
 
The remaining steel area, (As – Asf), is balanced by the compression in the 
rectangular portion of the beam. In this zone: 
                                      a = (As − Asf) fy / (0.85 f’c bw)  
                                       Mn2 = (As − Asf) fy (d − a /2) 
 
The total nominal resisting moment is the sum of the parts: 
Mn = Mn1 + Mn2 = Asf  fy(d − hf /2) + (As − Asf) fy (d − a /2) 
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From strain diagram: 
                                        c/dt ≤ εu /(εu + εt) 
 
Setting εu = 0.003 and  εt = 0.004 provides a max c/dt = 0.429 
The condition of tensile steel yield to occur prior to concrete crushing is 
satisfied if  
                              ρw,max = ρmax + ρf 
where 
ρw = As / bwd            and               ρf = As f / bwd 
 
The minimum reinforcement is based on bw: 
 

         ρmin = 0.25 √f’c / fy ≥ 1.4 / fy  
As,min = ρmin bwd 

 
c. Examples of T Beams 
 
Example 14: (Analysis problem) 
An isolated T beam is composed of a flange 700 mm wide and 150 mm 
deep cast monolithically with a web of 250 mm width that extends 600 
mm below the bottom surface of the flange to produce a beam of 750 
mm total depth. Tensile reinforcement consists of 6 No.32 (#10) bars 
placed in two horizontal rows. The centroid of the bar group is 650 mm 
from the top of the beam. If f’c = 21 MPa and fy = 420 MPa, what is the 
design moment capacity of the beam? 
Solution: 
Check flange dimensions, hf ≥ bw/2 : 150 > 250/2 , 150 > 125 
b ≤ 4 bw : 700 < 4×250 , 700 < 1000   OK 
Area of 6No.32 = 4914 mm2     
Check NA location: 
a = As fy /(0.85 f’cb)= 4914×420/0.85×21×700 = 165.2 mm > hf = 150mm 
so T beam analysis is required. 
 

     Asf  = 0.85 f’c(b – bw)hf / fy = 0.85×21(700 – 250)×150 /420 = 2869 mm2 
     Mn1 = Asf  fy(d − hf /2) = 2860×420 (650 – 150/2)×10– 6 = 692.8 kNm 
 
     a = (As − Asf) fy / (0.85 f’c bw) = 2045×420/(0.85×21×250) = 192.5 mm 
     Mn2 =(As − Asf) fy (d − a /2)=2045×420 (650 – 192.5/2)×10– 6=475.6 kNm 
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c = a / β1 = 192.5 / 0.85 = 226.5 mm 
dt = 685 mm to the lowest bar, 
c / dt = 226.5 / 685 = 0.331 < 0.375, so the εt > 0.005 and φ = 0.9 
φMn = 0.9 (692.9 + 475.6) = 1052 kNm 

 
Example 15: (Design problem) 

A floor system consists of a 75 mm concrete slab supported by continuous T 
beams with a 7.5 m span, 1.2 m on centers. Web dimensions are bw = 275 
mm and d = 500 mm. What tensile steel area is required at midspan to resist 
a factored moment of 725 kNm if fy = 420 MPa and f’c = 21 MPa? 
Solution: 
Determine effective flange width: 
b = 16 hf + bw = 16×75 + 275 = 1475 mm = 1.475 m 
b = l / 4 = 7.5 / 4 = 1.875 m 
b = 1.2 m (c. / c. spacing) 
The controlling b = 1.2 m 
 
Assume a = hf = 75 mm 
d – a /2 = 500 – 75/2 = 462.5 mm 
Trial: 
As = Mu / φ fy (d – a/2) = 725×106 /[0.9×420×462.5] = 4147 mm2 
Check a = As fy /(0.85 f’cb)= 4147×420/[0.85×21×1200] = 81.3 mm > hf 
T beam design is required and φ = 0.9 is assumed. 
 
Asf  = 0.85 f’c(b – bw)hf / fy = 0.85×21(1200 – 250)×75 /420 = 2948 mm2 
φMn1 =φ Asf  fy(d − hf /2) = 0.9[2948×420 (500 – 75/2)×10– 6 = 515.4 kNm 
φMn2 = Mn − φMn1 = 725 – 515.4 = 209.6 kNm 
 
Assume a = 100 mm 
As −Asf = φMn2/ φ fy (d – a/2)= 209.6 ×106 /0.9×420×(500 – 50) = 1232 mm2 
Check a = (As − Asf) fy /(0.85 f’cbw)= 1232×420/[0.85×21×275] = 105.4 mm 
This is close to 100 mm assumed. OK 
As = Asf + As − Asf  = 2948 + 1232 = 4181 mm2  
Check  

c = a / β1 = 105.4 / 0.85 = 124 mm 
c / dt = 124 / 500 = 0.248 < 0.375, so the εt > 0.005 and φ = 0.9 

     Design is satisfactory. 




